scholarly journals Demand Simulation for Water, Food Irrigation, and Energy from Micro Hydro Power Plant in Sungai Bayang, Bayang Utara, Pesisir Selatan West Sumatra

2018 ◽  
Vol 43 ◽  
pp. 01015
Author(s):  
Siti Nurlaila Indriani ◽  
Ahmad Agus Setiawan ◽  
Rachmawan Budiarto

Clean water or fresh water, food and energy are basic human needs. The three basic needs are dependent to one another. The relationship between the three is called the "The nexus of Water, Energy, and Food". It requires good governance on watershed which will be implemented for example to manage water resources to fulfil demand of clean or drinking water, irrigation in food area and energy sources in hydro power plant. This study conducted analysis and simulation to prepare projection of electricity produced by Micro hydro Power Plant (MHP) It integrates a climate change scenarios to forecast its influence on electricity demand and response of river. In addition, the study also presented projections of influence on irrigated food production scenario in irrigation for rice paddy fields. Projection of The MHP electricity and the water demand including for the food sector is conducted by using the WEAP (Water Evaluation and Planning) software, while electricity demand forecast is conducted by applying the LEAP (Long-Range Energy Alternatives Planning) software. The case studies in this study conducted in river flows Bayang’s River. On the river there are three operating MHPs: The Muaro Aie MHP (ity30 kW of installed capac), The Koto Ranah MHP (30 kW) and The Pancuang Taba MHP (40 kW). The LEAP simulation projected electricity demand for Pesisir Selatan until 2025. Demand for South Pesisir Regency up to 2025 is predicted to reach 226.4 GWh with growth of 11.2% per year in BAU scenario, while reach 113.7 GWh with a 5% annual growth in efficiency scenario. The WEAP provided projected electricity production of MHP, basic water needs and irrigation needs for paddy fields in District IV Nagari Bayang Utara until 2025. The MHP electricity production in final year of projection with BAU scenario reaches 0.88 GWh, while with a climate change scenario of 0.63 GWh. The electricity demand fulfilled by MHP is predicted to be 0.39% in the BAU scenario, 0.28% in climate change scenarios, and 0.55% in the electricity savings scenario. Of the three MHP, the MHP Pancuang Taba is the most vulnerable to climate change, while MHP Koto Ranah shows relatively lower fluctuation. The highest staple water requirement is for Pancuang Taba which is 3643.4 thousand m3. The growth of staple water needs until 2025 tends to be constant. and most rice irrigation needs are in agriculture 2 of 976 thousand m3. The growth of irrigation needs of Bayang watershed until 2025 tends to be constant. Most irrigation needs for paddy fields are in irrigation area of “Agriculture 2” reaching 976,000 m3. The growth of irrigation needs in Bayang watershed tends to be constant.

2019 ◽  
Vol 50 (6) ◽  
pp. 1679-1709 ◽  
Author(s):  
Min Fan ◽  
Daniel Ocloo Mawuko ◽  
Hideaki Shibata ◽  
Wei Ou

Abstract Water resources prioritization conservation planners are increasingly becoming aware of the economic value of water supply ecosystem services (ESs) under climate changes. Here we assessed how the water yield ES framework is implemented in the current spatial prioritization conservation of the water resources under climate change across the Teshio River watershed. We applied the systematic conservation model to optimize the area for water resources which satisfied the protection targets with and without considering economic values of the water yield provision service. The model indicated that the areas of spatial optimal ES protection for water yield with considering economic values were totally different from those without considering economic values of water resources. The optimal priority conservation areas were concentrated in southwestern, southeastern, and some northern areas of this watershed. These places could guarantee water resources sustainability from both environmental protection and socio-economic development standpoints. Moreover, the spatial priority conservation areas for water yield with economic value from hydro-power electricity production were traded off against the areas for water yield with economic values from resident water-use and irrigation for rice. Therefore, the systematic conservation planning of water yield with economic values under climate changes may provide a useful argument to promote the conservation of water resources.


Author(s):  
Rodric M. Nonki ◽  
André Lenouo ◽  
Clément Tchawoua ◽  
Christopher J. Lennard ◽  
Ernest Amoussou

Abstract. Nowadays, special attention is paid to hydroelectric production because it is an efficient, reliable, and renewable source of energy, especially in developing countries like Cameroon, where hydropower potential is the main source of electricity production. It also represents a useful tool to reduce the atmospheric greenhouse gas concentrations caused by human activities. However, it is the most sensitive industry to global warming, mainly because climate change will directly affect the quality, quantity of water resources (streamflow and runoff), which are the important drivers of hydropower potential. This study examined the response of hydropower potential to climate change on the Lagdo dam located in the Benue River Basin, Northern Cameroon. Hydropower potential was computed based on streamflow simulated using HBV-Light hydrological model with dynamically downscaled temperature and precipitation from the regional climate model REMO. These data were obtained using the boundary conditions of two general circulation models (GCMs): the Europe-wide Consortium Earth System Model (EC-Earth) and the Max Planck Institute-Earth System Model (MPI-ESM) under three Representative Concentrations Pathways (RCP2.6, RCP4.5 and RCP8.5). The results suggest that, the combination of decreased precipitation and streamflow, increased PET will negatively impact the hydropower potential in the Lagdo dam under climate change scenarios, models and future periods.


2020 ◽  
Author(s):  
Adrien Michel ◽  
Tristan Brauchli ◽  
Nander Wever ◽  
Bettina Schaefli ◽  
Michael Lehning ◽  
...  

<p>Climate change has already affected many components of our natural environment which are well described in the literature. Water temperature has received less interest despite the fact that it is recognized as key variable for assessing water quality of freshwater ecosystems in streams and lakes. It influences the metabolic activity of aquatic organisms but also biochemical cycles. Water temperature is also a key variable for many industrial sectors, e.g. as cooling water for electricity production or in large buildings, and for the spreading of some diseases affecting fishes.</p><p>It is very likely that climate change has and will also have an important effect on the temperature of streams. This study (Michel et al., 2020) investigates first the past temperature evolution and corresponding discharge in Switzerland since 1979, showing an increase of +0.33 ± 0.03° per decade in water temperature. Some differences between catchment type (alpine vs. lowland) and some important seasonal features are identified.</p><p>In a second step, the response of selected catchments in Switzerland to the future forcing is numerically assessed using the CH2018 climate change scenarios for Switzerland. The approach uses a sequence of physical models including Snowpack, Alpine3D and StreamFlow. The CH2018 scenarios have been down-scaled to hourly resolution using a novel approach based on a delta method which preserves the seasonal aspect of the climate change scenario. The results show an increase in temperature for any of the RCP (2.6, 4.5, and 8.5) and a strong impact of climate change on alpine catchments caused by changes in snowfall/melt and glacier melt. As a consequence, river ecosystems including fish populations will be severely impacted and current legal limits for the usage of water for cooling in the energy production sector and in the industry will be reached more often in the future.</p><p>REFERENCES</p><p>Michel, A., Brauchli, T., Lehning, M., Schaefli, B., & Huwald, H.: <em>Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour</em> , Hydrol. Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, 2020.</p>


2021 ◽  
Vol 23 (1) ◽  
pp. 29-31
Author(s):  
Vladana Rajaković-Ognjanović ◽  
Tina Dašić

When planning the construction of a hydroelectric power plant, an important segment is adequate monitoring of water quality. With an appropriate monitoring program, the multifunctional use of artificial lakes is enabled. Eutrophication (nutrient over-enrichment) of water in a lake is a phenomenon that has been noticed in all lakes. The consequence of eutrophication is the endangerment of the aquatic ecosystem. Eutrophication is a phenomenon that occurs as a response of the aquatic ecosystem to the increased concentration of nutrients, phosphorus (P) and nitrogen (N), due to natural and anthropogenic activities. Recent research indicates a correlation between local climate change and water circulation and the impact of climate change on all phenomena in the hydrological cycle. Temperature fluctuations, huge amounts of rain when precipitation is analysed, constant heating and increase in humidity all affect more intense eutrophication. The key conclusions of the research dealing with the construction of the hydroelectric power plant in Komarnica are: to introduce monitoring (permanent control) of water quality in lakes in order to minimize or control, even prevent eutrophication. Each artificial lake has its own unique characteristics. The dependence of chlorophyll, phosphorus and lake volume varies depending on the month, season and year. The proposal for the lake that will be built on Komarnica, which is part of the future hydroelectric power plant, is a monthly monitoring of the concentration of chlorophyll, nutrients and the volume of the lake. Seasonal monitoring depends on precipitation, hydrological and limnological characteristics and trends of dry and rainy episodes. Analyzes and previous research have shown that the introduction of mandatory parameters for monitoring water quality does not increase the cost of electricity production and energy conservation, but significantly improves and enhances the quality of the environment.


2019 ◽  
Vol 213 ◽  
pp. 02082
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Wojciech Nowak ◽  
Sebastian Stefański ◽  
Jarosław Krzywański ◽  
...  

Long-term forecasts indicate that the annual increases in electricity demand by 2030 will be approx. 2 ÷ 3% a year. At present, 40% of the world's electricity is produced using coal-fired power plants. Forecasts indicate that coal will still be the predominant fuel used to produce electricity and thus any actions aimed at increasing the efficiency of electricity production are purposeful. Enormous amounts of waste heat, which is not sufficiently used, are released during the process of electricity production. One of the ways to manage it is to use refrigeration systems based on adsorption chillers which would use waste heat to generate cold that would be employed for air-conditioning or process purposes. In this paper, the cycle of a conventional coal-fired power plant was modelled and then the possibilities of using waste heat for generation of cold as well as the impact of a chiller on the operation of a power unit were analysed using IPSEpro software.


2021 ◽  
Vol 8 (5) ◽  
pp. 152-166
Author(s):  
M. Medewou ◽  
K. Klassou ◽  
P. Chetangny

Climate change is a major threat to industrial development because of its adverse effects on the energy sector, especially hydroelectric power plants. This paper focuses on the analysis of the impact of climate change on the Mono River basin and the implications for the electricity production of Nangbéto Hydroelectric Power Plant. The approach consisted of combining historical hydrological data and physical, technical, and economic information to analyze the extent to which variations in average rainfall and global warming impacted the operation of the Nangbéto Hydroelectric Power plant. Based on the curves obtained, the impacts of climate change on the Mono River and on the operation of the Nangbéto Power Plant were recorded. Also, the management of the Nangbéto dam water retainer by the current operator was analyzed to highlight the strengths relating to the optimization of electricity production and the economic profitability of the plant. Keywords: Climate change, hydropower plant, optimization, hydrological data.


Sign in / Sign up

Export Citation Format

Share Document