scholarly journals Spatial conservation areas for water yield hydrological ecosystem services with their economic values effects under climate change: a case study of Teshio watershed located in northernmost of Japan

2019 ◽  
Vol 50 (6) ◽  
pp. 1679-1709 ◽  
Author(s):  
Min Fan ◽  
Daniel Ocloo Mawuko ◽  
Hideaki Shibata ◽  
Wei Ou

Abstract Water resources prioritization conservation planners are increasingly becoming aware of the economic value of water supply ecosystem services (ESs) under climate changes. Here we assessed how the water yield ES framework is implemented in the current spatial prioritization conservation of the water resources under climate change across the Teshio River watershed. We applied the systematic conservation model to optimize the area for water resources which satisfied the protection targets with and without considering economic values of the water yield provision service. The model indicated that the areas of spatial optimal ES protection for water yield with considering economic values were totally different from those without considering economic values of water resources. The optimal priority conservation areas were concentrated in southwestern, southeastern, and some northern areas of this watershed. These places could guarantee water resources sustainability from both environmental protection and socio-economic development standpoints. Moreover, the spatial priority conservation areas for water yield with economic value from hydro-power electricity production were traded off against the areas for water yield with economic values from resident water-use and irrigation for rice. Therefore, the systematic conservation planning of water yield with economic values under climate changes may provide a useful argument to promote the conservation of water resources.

2018 ◽  
Vol 11 (1) ◽  
pp. 106-129
Author(s):  
Min Fan ◽  
Hideaki Shibata ◽  
Li Chen

Abstract Effective information regarding water yield response to climate change provides useful support for decision making in water resources management. By integrating a hydrology model into a systematic conservation model, we developed an approach for modeling impacts of climate change on the water cycles and constructing spatial priority conservation areas for water yield ecosystem services in Teshio watershed located in northernmost Japan. The climate changes were projected to have impacts in increasing surface runoff, lateral flow, groundwater discharge and water yield. Surface runoff especially decreased in April and May and increased in March and September with rising temperature. We then investigated the spatial hotspots of water yields in typical periods (February, April and October, annual average water yield) to determine spatially priority conservation areas for water resources in terms of their different protection targets. The results also indicated that the areas of spatial optimal protection for water yields across different periods dynamically changed from spatial and temporal standpoints. The optimal priority conservation areas were concentrated in the southwest, north and southeast of Teshio watershed through comprehensively taking into account water yields in typical periods. Our results indicated that combination of hydrology and systematic conservation models would improve sustainable management of water resources across the watershed.


2017 ◽  
Vol 19 (2) ◽  
pp. 157
Author(s):  
Nunung Puji Nugroho

<p class="JudulABSInd"><strong>ABSTRAK</strong></p><p class="abstrak">Informasi hasil air dari suatu ekosistem sangat penting dalam pengelolaan sumber daya air. Dalam perencanaan kegiatan konservasi sumber daya air, informasi sebaran spasial hasil air diperlukan untuk menentukan prioritas wilayah terkait dengan alokasi anggaran. Hasil air dari suatu ekosistem atau daerah aliran sungai (DAS) dapat diestimasi dengan menggunakan model hidrologi. Penelitian ini bertujuan untuk mendapatkan informasi tentang hasil air, baik besaran maupun sebaran spasialnya, dari daerah tangkapan air (DTA) Danau Rawa Pening. Hasil air dari lokasi penelitian dihitung dengan menggunakan model hasil air pada InVEST (<em>the Integrated Valuation of Ecosystem Services and Tradeoffs</em>), yang didasarkan pada pendekatan neraca air. Hasil perhitungan menunjukkan bahwa volume hasil air di DTA Danau Rawa Pening pada tahun 2015 adalah sekitar 337 juta m<sup>3</sup>. SubDAS Galeh, sebagai subDAS terluas, merupakan penghasil air terbesar (72,4 juta m<sup>3</sup>) diikuti oleh subDAS Sraten (66,8 juta m<sup>3</sup>) dan Parat (62,4 juta m<sup>3</sup>). Secara spasial, hasil air di lokasi kajian mempunyai nilai antara 0 hingga 29.634,19 m<sup>3</sup>/ha. Wilayah hulu dan tengah subDAS Sraten secara umum mempunyai hasil air yang lebih tinggi, sedangkan wilayah danau dan sekitarnya serta hulu subDAS Galeh mempunyai hasil air yang lebih rendah dibandingkan dengan wilayah lainnya. Wilayah dengan hasil air tinggi dapat diprioritaskan dalam kegiatan konservasi sumber daya air untuk mendukung pasokan air ke Danau Rawa Pening.</p><p><strong><em>Kata kunci</em></strong><em>: hasil air, daerah tangkapan air, model InVEST, Danau Rawa Pening</em><em></em></p><p class="judulABS"><strong>ABSTRACT</strong></p><p class="Abstrakeng">Accurate information on water yield from an ecosystem is very important in the management of water resources. In the planning of water resources conservation activities, the information on the spatial distribution of water yield is needed to determine regional priorities related to budget allocations. The water yield from an ecosystem or watershed can be estimated using a hydrological model. This study aimed to obtain information about the water yield, both the magnitude and their spatial distribution, from the catchment areas of Lake Rawa Pening. The water yield from the study area was calculated using the water yield model in InVEST (the Integrated Valuation of Ecosystem Services and Tradeoffs), which based on the water balance approach. The results indicated that the volume of water yield in Lake Rawa Pening for 2015 is approximately 337 million m<sup>3</sup>. Galeh subwatershed, as the largest subwatershed, is the largest water producer (72.4 million m<sup>3</sup>), followed by Sraten subwatershed (66.8 million m<sup>3</sup>) and Parat subwatershed (62.4 million m<sup>3</sup>). Spatially, the water yield at the study site has a value between 0 to 29,634.19 m<sup>3</sup>/ha. Upstream and middle areas of Sraten subwatershed generally have higher water yield, while the lake and its surrounding areas as well as the upstream of Galeh subwatershed have lower water yield compared to other regions. The regions with high water yield can be prioritized in water resource conservation activities to support the supply of water to Lake Rawa Pening.</p><p><strong><em>Keywords</em></strong><em>: water yield, catchment areas, InVEST model, Lake Rawa Pening</em><em></em></p>


2019 ◽  
Vol 11 (4) ◽  
pp. 1235-1249 ◽  
Author(s):  
A. Mentzafou ◽  
A. Conides ◽  
E. Dimitriou

Abstract Coastal ecosystems are linked to socio-economic development, but simultaneously, are particularly vulnerable to anthropogenic climate change and sea level rise (SLR). Within this scope, detailed topographic data resources of Spercheios River and Maliakos Gulf coastal area in Greece, combined with information concerning the economic value of the most important sectors of the area (wetland services, land property, infrastructure, income) were employed, so as to examine the impacts of three SLR scenarios, compiled based on the most recent regional projections reviewed. Based on the results, in the case of 0.3 m, 0.6 m and 1.0 m SLR, the terrestrial zone to be lost was estimated to be 6.2 km2, 18.9 km2 and 31.1 km2, respectively. For each scenario examined, wetlands comprise 68%, 41% and 39% of the total area lost, respectively, reflecting their sensitivity to even small SLR. The total economic impact of SLR was estimated to be 75.4 × 106 €, 161.7 × 106 € and 510.7 × 106 € for each scenario, respectively (3.5%, 7.5% and 23.7% of the gross domestic product of the area), 19%, 17% and 8% of which can be attributed to wetland loss. The consequences of SLR to the ecosystem services provided are indisputable, while adaptation and mitigation planning is required.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


2010 ◽  
Vol 16 (3) ◽  
pp. 221
Author(s):  
David Goodall

This volume is the result of an initiative by the Natural Resources Management Ministerial Council, to assess the vulnerability of Australia?s biodiversity to climate change. It may be said at once that this remit is interpreted, not as referring to changes in ?biodiversity? as usually understood ? the number of species present ? but rather as covering all responses of organisms and the ecosystems in which they participate to the climate changes now in progress and in prospect. This extension of ?biodiversity? is clarified by the statement that ?modern biodiversity conservation . . . should ensure . . . the maintenance of ecological processes and the delivery of ecosystem services?.


2019 ◽  
Vol 11 (5) ◽  
pp. 1443 ◽  
Author(s):  
Rui Yan ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
Qiang Liu

This study researched the individual and combined impacts of future LULC and climate changes on water balance in the upper reaches of the Beiluo River basin on the Loess Plateau of China, using the scenarios of RCP4.5 and 8.5 of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The climate data indicated that both precipitation and temperature increased at seasonal and annual scales from 2020 to 2050 under RCP4.5 and 8.5 scenarios. The future land use changes were predicted through the CA-Markov model. The land use predictions of 2025, 2035, and 2045 indicated rising forest areas with decreased agricultural land and grassland. In this study, three scenarios including only LULC change, only climate change, and combined climate and LULC change were established. The SWAT model was calibrated, validated, and used to simulate the water balance under the three scenarios. The results showed that increased rainfall and temperature may lead to increased runoff, water yield, and ET in spring, summer, and autumn and to decreased runoff, water yield, and ET in winter from 2020 to 2050. However, LULC change, compared with climate change, may have a smaller impact on the water balance. On an annual scale, runoff and water yield may gradually decrease, but ET may increase. The combined effects of both LULC and climate changes on water balance in the future were similar to the variation trend of climate changes alone at both annual and seasonal scales. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1801 ◽  
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Land use/land cover (LULC) and climate change affect the availability of water resources by altering the magnitude of surface runoff, aquifer recharge, and river flows. The evaluation helps to identify the level of water resources exposure to the changes that could help to plan for potential adaptive capacity. In this research, Cellular Automata (CA)-Markov in IDRISI software was used to predict the future LULC scenarios and the ensemble mean of four regional climate models (RCMs) in the coordinated regional climate downscaling experiment (CORDEX)-Africa was used for the future climate scenarios. Distribution mapping was used to bias correct the RCMs outputs, with respect to the observed precipitation and temperature. Then, the Soil and Water Assessment Tool (SWAT) model was used to evaluate the watershed hydrological responses of the catchment under separate, and combined, LULC and climate change. The result shows the ensemble mean of the four RCMs reported precipitation decline and increase in future temperature under both representative concentration pathways (RCP4.5 and RCP8.5). The increases in both maximum and minimum temperatures are higher for higher emission scenarios showing that RCP8.5 projection is warmer than RCP4.5. The changes in LULC brings an increase in surface runoff and water yield and a decline in groundwater, while the projected climate change shows a decrease in surface runoff, groundwater and water yield. The combined study of LULC and climate change shows that the effect of the combined scenario is similar to that of climate change only scenario. The overall decline of annual flow is due to the decline in the seasonal flows under combined scenarios. This could bring the reduced availability of water for crop production, which will be a chronic issue of subsistence agriculture. The possibility of surface water and groundwater reduction could also affect the availability of water resources in the catchment and further aggravate water stress in the downstream. The highly rising demands of water, owing to socio-economic progress, population growth and high demand for irrigation water downstream, in addition to the variability temperature and evaporation demands, amplify prolonged water scarcity. Consequently, strong land-use planning and climate-resilient water management policies will be indispensable to manage the risks.


2020 ◽  
Vol 257 ◽  
pp. 120424 ◽  
Author(s):  
Srikanta Sannigrahi ◽  
Qi Zhang ◽  
P.K. Joshi ◽  
Paul C. Sutton ◽  
Saskia Keesstra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document