scholarly journals Hydraulic borehole mining method possible application at Middle Larba alluvial gold field

2018 ◽  
Vol 56 ◽  
pp. 01025
Author(s):  
Vikror Rochev

Gold on placer deposits is mainly extracted in two ways: open and underground. But the open method of mining has a great negative impact on the environment, and the mine method is characterized by high labor intensity, capital and operating costs. As an alternative to these methods of development of alluvial gold, the hydraulic borehole mining method can be used. The use of a well as a hydro-mining creates favorable opportunities for ensuring nature protection and safe operation. When applying the method, the well does not have hydraulic extractions: stripping, this allows preserving the cultural layer of the soil in its integrity; explosive, loading works and use of motor transport, excluding dustiness and gas pollution of the atmosphere; the hard and harmful work for people's health is eliminated. The method of well drilling requires further serious scientific, technical and developmental studies to increase its reliability and expand the field of application. Alluvial deposits of gold are the most favorable objects for hydraulic borehole mining under their mining and geological conditions. Recently, new gold placers have been identified and are being surveyed at a depth of more than 40 m. With a high content of metal in them, these placers are very promising for mining by the hydraulic borehole mining method. The reserves of gold in these fields reach several tens of tons. Against the backdrop of a reduction in inventories for open and underwater mining, large technical difficulties, significant capital investments and operating costs for underground mining of thawed buried placers, the advantages for gold mining by the hydraulic borehole mining method are increasing. Based on mentioned above, the study of the application of the hydraulic borehole mining method in the conditions of Siberia and the Far East is a timely scientific task.

Author(s):  
V. Yu. Grishin ◽  
N. P. Udalova ◽  
P. P. Manevich

The volume of coal mining by underground method in the Russian Federation is about 100 million tons annually and has no tendency to decrease. At the same time, with the development of underground mining, there is a constant complication of mining and geological conditions and an increasing negative impact on the environment. Over the past three years, there have been significant changes in the area of state environmental oversight. Some of them are the introduction of a risk-based approach and the best available technologies into the Russian regulatory system. Now it is legislatively established that development, introduction and application of the best available technologies in a life cycle of the coal-mining enterprise can serve as the basis for lowering of a risk category of coal-mining object. In turn, this should encourage the subsoil user to promote and implement environmental policy at their enterprise. In article features of introduction of risk-oriented approach and the best available technologies and an estimation of prospects of introduction of such methods at the underground coal-mining enterprise are considered. As a result of the analysis the hierarchy of relations of modern legislation in the sphere of ecological supervision, coal-mining enterprise, its possibilities on development of the best available technologies and branches of decisions according to the riskoriented approach is presented.


2020 ◽  
Vol 192 ◽  
pp. 01007
Author(s):  
Ruslan Seryi ◽  
Vladimir Alekseev

There are many scientific and practical works related to the identification and assessment of factors affecting the efficiency of beneficiation of placer sands at the sluice box, while the energy consumption of the beneficiation process, as well as assessing the efficiency of the sand screening process and the cost of maintaining the devices, is given little attention. Studies of the energy consumption of sand washing, carried out at several alluvial deposits, made it possible to identify the most energyconsuming devices, as well as to compare the energy expended for transporting rock through processing plants and to provide solid to liquid ratio during beneficiation at sluice boxes.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2205
Author(s):  
Han Liang ◽  
Jun Han ◽  
Chen Cao ◽  
Shuangwen Ma

Thin spray-on liner (TSL) is a surface protection technology used by spraying a polymer film, which is widely used for mine airtightness and waterproofing. A reinforcing TSL can replace steel mesh, which is a new method for roadway support. This paper reviews the development of a reinforcing TSL. Considering the deterioration of geological conditions in deep underground mining and the demand for reinforcing automation, two kinds of polymeric reinforcing TSL (RPTSL) materials are developed. The mechanical characteristics of the new TSL materials are studied experimentally. Results show that the average compressive strength, tensile strength, cohesion, and internal friction angle of the two TSL materials are 52 and 32 MPa, 12 and 8 MPa, 6.2 and 17.2 MPa, and 33.6° and 25.9°, respectively. The bonding strength between the two materials and coal is greater than the tensile strength of coal itself, and the mechanical properties of the material for comparison are lower than those of both materials. Based on the TSL support mechanism, we examine the application of the two TSL materials to the mining environment and compare the mechanical properties of polymer materials and cement-based materials. The advantages of polymer materials include versatile mechanical properties, good adhesion, and high early strength. This study provides a new support material to replace steel mesh for roadway surface support, which satisfies the needs of different surface support designs under complex geological conditions, and promotes the automation of roadway support.


2021 ◽  
Vol 28 (1) ◽  
pp. 426-436
Author(s):  
Zelin Ding ◽  
Xuanyi Zhu ◽  
Hongyang Zhang ◽  
Hanlin Ban ◽  
Yuan Chen

Abstract Geological conditions play a decisive role in the stability of arch dam engineering, and the asymmetric geological conditions of the abutment have a very negative impact on the safety of the arch dam. This article takes Lizhou arch dam as the research object, and determines that the arch dam is preliminarily affected by the geological asymmetric characteristics. Through the geomechanical model test method, the overload failure test of the Lizhou arch dam was carried out, and the resistance body, the instability deformation of the structural plane of the two dam abutments, and the influence of each structural plane on the dam body are obtained, and the safety factor is determined. According to the test results under the condition of asymmetric foundation of arch dam, for the structural plane which affects the geological asymmetry of the arch dam, the corresponding reinforcement measures are carried out. The feasibility of the reinforcement scheme is verified by the finite element method, and the safety factor after reinforcement is obtained. According to the results, it is suggested that some engineering measures can be taken to reduce the geological asymmetry between the two banks and ensure the safe and stable operation of the arch dam in the future.


Author(s):  
I. V. Sokolov ◽  
Y. G. Antipin ◽  
N. V. Gobov ◽  
I. V. Nikitin

Based on an analysis of the design principles and practice of underground mining of ore deposits, the most significant features, trends to develop and directions to enhance of underground geotechnology in the field of opening and preparation, mining systems, filling works and ore preparation have been established. The main signs of innovation - scientific research and implementation in production in order to obtain additional value, are highlighted. Various approaches to the development of innovative underground geotechnologies are shown and a methodology for their justification is formulated based on a systematic approach implemented in the framework of the concept of integrated development of mineral resources and on the principles of economic efficiency, industrial and environmental safety, completeness of subsoil development. The experience of the IM UB RAS on the development and implementation of innovative underground geotechnologies in the design and industrial operation of a number of ore deposits is given, which significantly increased the completeness and quality of ore extraction from the subsoil, increased labor productivity in sinking and stoping works, reduced capital and operating costs for ore mining and to utilize mining and processing waste in the mined-out space.


2021 ◽  
Author(s):  
Mykhaylo Paduchak ◽  
Viktor Dudzych ◽  
Anatolii Boiko

Abstract Avoiding of negative impact of slurry contact with productive sections by utilization of swellable pakers well completion systems as a key solution for depleted reservoirs. Results are compared to previously used classic well completion method with production casing cementing The new method of the well completion is based on a long period and many wells operations within Svyrydivske field in Dnipro-Donets Basin (here and after DDB). Precise selection of hybrid, oil and water based elastomers and correct placement in the appropriate hole zones for water and sectional isolation together with oil based mud utilization during drilling have provided stable production in depleted reservoirs and have minimized negative consequences from water filtration. The results achieved and the well completion method are described in detail to allow readers to replicate all results in a comparable geological conditions in DDB. Current well completion method has a couple of outstanding results achieved: –well integrity barrier is based on sufficient differential pressure provided by swellable packers;–reliable long term water isolation of all detected water contained intervals;–the production sections are not polluted by slurry filtrated water;–increased production rate comparing to cemented wells;–no risks of slurry loss during well cementing. This technology has been successfully implemented in both vertical and deviated wells on 4.5″ (114.3 mm) casing OD, in the interval 5100-5450 meters, bottom hole temperature 120-135°C. The differential pressure provided by swellable packer is up to 10,000 PSI (68.9 MPa). Fluid reactive packers are ready to expand and isolate highly cavernous hole sections and keep differential pressure sustainably. To achieve the best results with this well completion method, it is also important to use reliable gas tight casing connections and know precise reservoir characteristics. That is why the technology is recommended to be customized for well known brownfield reservoirs with high rate of depletion. The main benefit of the well completion method is a proved and safe technical solution for mainly depleted deep gas and condensate deposits in DDB (Ukraine) with sensitive economics


Author(s):  
I. E. Mazina ◽  
A. A. Stel’makhov ◽  
L. F. Mullagalieva

Underground mining of coal deposits has a negative impact on all components of the environment. When developing a coal deposit, it is coal mining technology that determines the scale and consequences of the negative impact. Changes in the stress-strain state of the geo-environment can lead to a violation of the hydrological regime, increased gas emission from the host rocks, the initiation of gas-dynamic processes. Choice of roofing management technology - as a geotechnological method of natural and technical system management determines the environmental friendliness of coal mining and creates safety conditions. The article deals with the technology of roofing control during coal production. For this purpose mathematical modeling and analysis of stress-strain state of the bottomhole part of the coal bed for the conditions of S.M. Kirov is performed. As a result of modeling, two technologies of roof control were analyzed - complete caving and stowing. For the worked out clearing leaves filled with either caving rocks or stowing material, there are characteristic unloading zones in the massif to be worked and overworked, as well as pressure reference zones, which fall on the parts of the pillars associated with the lava. It was found out that the application of the stowing technology creates conditions for minimization of gravitational stresses in the geoenvironment, as well as significantly reduces the potential energy of form change.


2017 ◽  
Vol 27 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Jarosław Brodny ◽  
Sara Alszer ◽  
Jolanta Krystek ◽  
Magdalena Tutak

Abstract Underground extraction of coal is characterized by high variability of mining and geological conditions in which it is conducted. Despite ever more effective methods and tools, used to identify the factors influencing this process, mining machinery, used in mining underground, work in difficult and not always foreseeable conditions, which means that these machines should be very universal and reliable. Additionally, a big competition, occurring on the coal market, causes that it is necessary to take action in order to reduce the cost of its production, e.g. by increasing the efficiency of utilization machines. To meet this objective it should be pro-ceed with analysis presented in this paper. The analysis concerns to availability of utilization selected mining machinery, conducted using the model of OEE, which is a tool for quantitative estimate strategy TPM. In this article we considered the machines being part of the mechanized longwall complex and the basis of analysis was the data recording by the industrial automation system. Using this data set we evaluated the availability of studied machines and the structure of registered breaks in their work. The results should be an important source of information for maintenance staff and management of mining plants, needed to improve the economic efficiency of underground mining.


Sign in / Sign up

Export Citation Format

Share Document