scholarly journals Some important aspects of rock mechanics and geomechanics

2019 ◽  
Vol 109 ◽  
pp. 00114 ◽  
Author(s):  
Oleksii Voloshyn ◽  
Oleh Riabtsev

This work considers the analysis of important aspects of rock mechanics, such as the variability of the mechanical properties of rocks under the samples testing, the continuity of the rock mass and the deformation beyond the elastic limit, which have a great influence on the accuracy and reliability when conducting geomechanical studies of the rock mass during coal mining. The main methods for solving geomechanical problems are shown.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Saisai Wu ◽  
Xiaohan Zhang ◽  
Junping Li ◽  
Zhao Wang

The behavior of rock mass is governed by the properties of both the rock material and discontinuities in the rock mass. Surrounding environments including the existence of water also have a great influence on the behavior and mechanical properties of rocks. In this study, a novel-designed compression and seepage testing system, associated with an acoustic emission system, was designed and constructed. The changes in the specimens resulting from the uniaxial compression were monitored by an acoustic emission technique. The characteristics of the acoustic emission parameters at different stages including compaction and crack initiation, crack propagation, and catastrophic failure were analyzed. The existence of seepage had direct influences on the mechanical properties and failure patterns of the specimens. The specimens tested in pure compression conditions demonstrated strong burst proneness and ruptured into separate pieces, while for the specimens with seepage, no burst proneness was observed and the specimens tended to fail along a macroscopic shear failure plane. The highest average energy of the acoustic signal occurred at the stage of initial rupture of rock specimens, rather than at the stage of widespread rupture. The studies explored the possibilities of using the acoustic emission technique to investigate the problems associated with the seepage in geotechnical and rock engineering and provided meaningful results for further research in this field.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 562
Author(s):  
Marek Jendryś ◽  
Andrzej Hadam ◽  
Mateusz Ćwiękała

The following article analyzes the effectiveness of directional hydraulic fracturing (DHF) as a method of rock burst prevention, used in black coal mining with a longwall system. In order to define changes in seismic activity due to DHF at the “Rydułtowy” Black Coal Mine (Upper Silesia, Poland), observations were made regarding the seismic activity of the rock mass during coal mining with a longwall system using roof layers collapse. The seismic activity was recorded in the area of the longwall itself, where, on a part of the runway, the rock mass was expanded before the face of the wall by interrupting the continuity of the rock layers using DHF. The following article presents measurements in the form of the number and the shock energy in the area of the observed longwall, which took place before and after the use of DHF. The second part of the article unveils the results of numerical modeling using the discrete element method, allowing to track the formation of goafs for the variant that does not take DHF into consideration, as well as with modeled fractures tracing DHF carried out in accordance with the technology used at “Rydułtowy” coal mine.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Veljko Rupar ◽  
Vladimir Čebašek ◽  
Vladimir Milisavljević ◽  
Dejan Stevanović ◽  
Nikola Živanović

This paper presents a methodology for determining the uniaxial and triaxial compressive strength of heterogeneous material composed of dacite (D) and altered dacite (AD). A zone of gradual transition from altered dacite to dacite was observed in the rock mass. The mechanical properties of the rock material in that zone were determined by laboratory tests of composite samples that consisted of rock material discs. However, the functional dependence on the strength parameter alteration of the rock material (UCS, intact UCS of the rock material, and mi) with an increase in the participation of “weaker” rock material was determined based on the test results of uniaxial and triaxial compressive strength. The participation of altered dacite directly affects the mode and mechanism of failure during testing. Uniaxial compressive strength (σciUCS) and intact uniaxial compressive strength (σciTX) decrease exponentially with increased AD volumetric participation. The critical ratio at which the uniaxial compressive strength of the composite sample equals the strength of the uniform AD sample was at a percentage of 30% AD. Comparison of the obtained exponential equation with practical suggestions shows a good correspondence. The suggested methodology for determining heterogeneous rock mass strength parameters allows us to determine the influence of rock material heterogeneity on the values σciUCS, σciTX, and constant mi. Obtained σciTX and constant mi dependences define more reliable rock material strength parameter values, which can be used, along with rock mass classification systems, as a basis for assessing rock mass parameters. Therefore, it is possible to predict the strength parameters of the heterogeneous rock mass at the transition of hard (D) and weak rock (AD) based on all calculated strength parameters for different participation of AD.


2021 ◽  
Author(s):  
Gamri Hamza ◽  
Allaoui Omar ◽  
Zidelmel Sami

Abstract The effect of the morphology and the martensite volume fraction on the microhardness, the tensile, the friction and the wear behavior of API X52 dual phase (DP) steel has been investigated. Three different heat treatments were used to develop dual phase steel with different morphologies and with different amounts of martensite: Intermediate Quenching Treatment/Water (IQ); Step Quenching Treatment (SQ) and direct quenching (DQ). Tribological tests are conducted on DP steels using a ball-on-disc configuration under normal load of 5 N and at a sliding speed of 4 cm/s were used to study the friction and wear behavior of treated samples. Results show that the ferrite–martensite morphology has a great influence on the mechanical properties of dual phase steel. The steel subjected to (IQ) treatment attain superior mechanical properties compared to the SQ and the DQ treatments. On the other hand, it is also found that the friction coefficient and the wear rate (volume loss) decrease when the hardness and the martensite volume fraction increase. The steel with fine fibrous martensite provide good wear resistance.


2011 ◽  
Vol 399-401 ◽  
pp. 2155-2159
Author(s):  
Qing Sheng Liu ◽  
Hui Fang

Based on the service ambient with aluminium electrolysis condition, the evolution of compressive strength, elastic modulus and stress-strain curve of carbon cathode samples under various conditions are investigated by experimental simulation method; the deterioration mechanism of the mechanical of carbon cathode is also studied. Results show that different carbon cathode materials and ambient conditions have great influence on strength and elastic modulus of carbon cthode. The mechanical properties such as compressive strength and elastic modulus of carbon catodes can be degraded by the erosion of sodium and molten salt during aluminium electrolysis, that has been confirmation by the SEM and XRD analysis.


Sign in / Sign up

Export Citation Format

Share Document