scholarly journals Development of Environmentally Friendly Brake Lining Material

2019 ◽  
Vol 120 ◽  
pp. 03005
Author(s):  
I K. Adi Atmika ◽  
IDG. Ary Subagia ◽  
IW. Surata ◽  
IN. Sutantra

Materials commonly used as brake pads are asbestos and alloys, but this material is very dangerous to the environment and health. This research was developed to answer these problems, namely to look for alternative brake pads that have good mechanical and structural properties and are environmentally friendly. Brake lining pads material is made from hybrid composite reinforced basalt, shells, alumina and bound using phenolic resin polymer (PR-51510i). This brake pads material is produced through a sintering process with an emphasis of 2000 kg for 30 minutes at a fixed temperature of 160°C. This hybrid composite is made in as many as five variations, each of which is tested for wear resistance using a pin on disc test based on ASTM G 99-95a standards, while destilled water absorption test was based on ASTM D 570-98. The greatest wear rate is 0.000090 g/cm, which is still lower than wear rate of asbestos brake pad materials, and the highest destilled water absorption of the brake pads specimens obtained was 0.041558 still lower than the destilled water absorption of asbestos brake pads.

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Vlastimil Matějka ◽  
Mara Leonardi ◽  
Petr Praus ◽  
Giovanni Straffelini ◽  
Stefano Gialanella

In this study, graphitic carbon nitride (g-C3N4, labelled as gCN) was tested in the formulation of copper-free (Cu-free) friction mixtures, which are potentially interesting for brake pad manufacturing. Three formulations of friction composites were prepared starting from a common Cu-free master batch: (i) without graphite, (ii) with graphite and (iii) with gCN. The mixtures were pressed in the form of pins by hot-press moulding. The friction-wear performance of the prepared pins was investigated using a pin-on-disc (PoD) test at room temperature (RT), high temperature (HT) (400 °C) and, again, at room temperature (H-RT). The values of the friction coefficient (µ) for the composites with gCN (or graphite) were as follows: (i) RT test, µRT = 0.52 (0.47); (ii) HT test, µHT = 0.37 (0.37); (iii) RT after the HT tests, µH-RT = 0.49 (0.39). With respect to wear resistance, the samples with graphite performed better than the samples without this solid lubricant. To the best of our knowledge, this is the first report regarding the evaluation of the role of gCN in friction composites designed for automotive brake lining applications. The results indicate the main role of gCN as a soft abrasive.


2021 ◽  
pp. X
Author(s):  
Athijayamani AYYANAR ◽  
Ramkumar GP ◽  
Alavudeen AZIZ BATCHA ◽  
Thiruchitrambalam MANI

Mechanical properties of vinyl ester hybrid composites reinforced with alkali treated Smilax zeylanica and sisal fibers were studied at wet condition in the present communication. Hybrid composites were fabricated by using a simple hand lay up technique based on three different fiber loading of 25, 35, and 45 wt.% with alkali treated fibers. Hybrid composite specimens were then subjected to the water absorption test to observe the behaviours of composite specimens at wet condition under mechanical loads such as tensile, flexural and impact. Water absorption test was carried out in two ways at distilled water environment at room temperature. First way test was conducted for 10 days to observe the percentage of water particle absorption of hybrid composites. Second way test was performed for 5 days to determine the mechanical properties of hybrid composites at wet condition to observe its durability when they are used in outdoor applications. Mechanical properties of hybrid composite specimens at wet conditions were compared with the dry composite specimens. Experimental results showed that the percentage of the water particle absorption in the alkali treated hybrid fiber composites is lower as compared to the untreated hybrid fiber composites. Mechanical properties of alkali treated hybrid fiber composites at wet condition are slightly reduced as compared to the treated hybrid fiber composite at dry condition. As a result, it is observed that the resistance for the penetration of the water particles is higher for the alkali treated smilax zeylanica and sisal fibers reinforced vinyl ester hybrid composites. The fracture surfaces of the hybrid composite specimens were examined by scanning electron microscope to understand the effects of water absorption on the mechanical properties.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 424 ◽  
Author(s):  
Pramod V Badyankal ◽  
Manjunatha T S ◽  
Gurushanth B Veggar

Natural fibers are available naturally from geological, animals and plants. The composite materials can be produced by using these fibers for good properties. In this present work the hybridization of randomly oriented Banana [B] and Sisal [S] of proper composition 20%B 30%S, 30%B 20%S and 25%B 25 %S using 50% Epoxy L-12 resin with the hardener K6 in the 10:1 ratio under cold process method was used. According to ASTM G99 specimens are used to calculate the specific wear rate by pin on disc method and using Taguchi technique. The test specimen with 12 X 12 X 40 mm3 was used to calculate the percentage of water absorption. 


Author(s):  
Prof Maibusab ◽  
H K Shivanand ◽  
Madhu M. G. ◽  
Shivaraj H.A. ◽  
Sumana B. G.

This research work investigated the in?uence of graphite powder on the wear behavior of Al 7075/Graphite Powder (Gr)/Bagasse ash (BA) hybrid composite. The investigation reveals the effectiveness of incorporation of graphite powder in the composite for gaining wear reduction. The Al 7075 (Aluminium alloy 7075) reinforced with graphite powder and Bagasse ash were investigated. The conventional liquid casting technique was used for the fabrication of composite material and subjected to T6 heat treatment. The reinforcement content was chosen as 1, 3, and 5wt. % of graphite powder to identify its potential for self-lubricating property under dry sliding conditions. Hybrid composite is processed at 1wt% of Gr with 2, 4 and 6wt% of BA. The effect of load on dry sliding wear rate and coefficient of friction performance of Al 7075 casting alloy and its composites was evaluated by using a pin-on-disc with two different loads with constant speed at room temperature. Wear tests were conducted by using pin on disc apparatus to evaluate the tribological behaviour of the composite and to determine the optimum content of graphite powder for its minimum wear rate. The wear rate decreases with addition of graphite powder content and reaches its minimum at 5wt. % graphite. The coefficient of friction decreases with addition of graphite content and was found to be minimum at wt. 5% graphite. The wear properties of the hybrid composites containing graphite exhibited the superior wear-resistance properties.


2021 ◽  
Author(s):  
Zheming Zhang ◽  
Pingping Jiang ◽  
Dekai Liu ◽  
Shan Feng ◽  
Yan Leng ◽  
...  

With increasing attention to environment and health, the demand for environmentally friendly plasticizers, which were applied to produce phthalate-free flexible poly(vinyl chloride) (PVC), is becoming more and more urgent. In...


2021 ◽  
pp. 36-40
Author(s):  
F.F. Yusubov

Tribotechnical indicators of environmentally friendly frictional composite materials with phenol-formaldehyde matrix are studied. Friction tests were carried out on a MMW-1 vertical tribometer according to the pin-on-disk scheme. Keywords: brake pads, composites, friction and wear, plasticizers, degradation, porosity. [email protected]


Author(s):  
Fathima Banu Raza ◽  
Anand Kumar

The o-rings in ball retained overdentures deteriorate with time and need replacement to restore the retentive quality. We evaluated retrospectively the mechanical properties of o-rings after 3 years in function in one and two-piece implant-supported overdentures. The o-rings were retrieved from one-piece (Myriad snap, Equinox-Straumann, 3.3 x 13mm) and two-piece (Neo Biotech, 3.3 x 13mm) implant-supported overdenture patients. A total of 16 pairs of matrices were tested for wear, type of damage and elasticity using Pin on Disc method, USB Digital Camera in 30x zoom and Universal Tensile Machine respectively. The statistical analysis for independent groups were done with the Mann-Whitney U test. Assessment of used O-rings showed 84% more wear in the two-piece system with an abrasive type of damage while 46% wear in the one-piece system with a compressive type of damage. The o-rings in one-piece system showed increase in elongation and maximum displacement to 2% and 7% respectively, while two-piece system showed decrease in elongation and maximum displacement by 13% and 6% respectively. In one-piece system, the loss of retention was more with slow wear rate and in two-piece system, the wear resistance of O-rings decreased due to increased stiffness. Further studies to evaluate the changes in O-ring with increased sample size and at interval 1 year will pave way for insight into the progressive changes in the mechanical properties of an O-ring.


2018 ◽  
Vol 21 (2) ◽  
pp. 80-84 ◽  
Author(s):  
Retno Ariadi Lusiana ◽  
Vivi Dia Ahmad Sangkota ◽  
Sri Juari Santosa

Evaluation character of chitosan membrane-succinate / poly vinyl alcohol-poly ethylene glycol (PVA-PEG) were prepared in acetic acid solvent through a phase inversion method has been performed. The study began with the preparation of crosslinked chitosan compounds with succinic acid, followed by preparation into membrane by combining PVA-PEG. Character analysis of the resulting material using FTIR, EDX, TGA, water absorption test, tensile strength, membrane hydrophilicity. The ability of membrane permeation was tested against creatinine. The results showed that the succinate had reacted with chitosan. Chitosan modification through cross link and polymer alloys increases tensile strength and membrane strain of 1.7-2.5 x of pure chitosan membrane. In addition, the modified membrane also has higher water absorption and hydrophilicity values than the unmodified membrane, and this implies the ability of membrane-induced creatinine permeation. Permeable permeation values were 13.8% in chitosan, 24.84% on chitosan-succinate and 25% in chitosan-succinate / PVA-PEG. Chitosan-succinate membranes have the ability to use more than 4x repeated use.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Aswathi A. Narayanan ◽  
R. S. Sudheesh

Hybrid PTFE/epoxy composites are widely used as materials for self-lubricating spherical bearing which are used in a high-temperature environment. In the present work, zirconium diboride (ZrB2) particles are incorporated to enhance high-temperature tribological properties of PTFE/epoxy composites. Pin on disc experiment is conducted with the aid of design of experiments (DOE) using central composite-response surface methodology (RSM). Under a load of 40 N and 1.25 m/s sliding speed, the optimum content 5.95 vol% of PTFE and 5.05 vol% of ZrB2, yields an ultralow coefficient of friction (COF) in conjunction with a low wear rate of the composite. The addition of ultra-high-temperature ceramic ZrB2 particles and solid lubricant PTFE is found to enhance the thermal conductivity and improve the heat transfer thereby reducing contact temperature. The use of optimum composition of the composite is capable of reducing the wear rate and high local temperature due to friction, implying its potential use as a self-lubricating spherical bearing liner material.


Sign in / Sign up

Export Citation Format

Share Document