scholarly journals Identification of Hydrocarbon Gas and Discriminate CO2 Using Lame Parameter and Batzle-Wang Model

2019 ◽  
Vol 125 ◽  
pp. 15003
Author(s):  
Alvian Yogi Pamungkas ◽  
Mohammad Syamsu Rosid ◽  
Mochammad Wahdanadi Haidar

Drilling activities in 2016 were carried out at 34 points with only achieving a success ratio of 26%. It affects the decreasing in natural gas reserves. In addition, the presence of CO2 raises problems during production and environmental problems. So, it is necessary to identify hydrocarbon gas and to discriminate CO2. The method used for gas identification is the Lame parameter where the parameters can distinguish the effects caused by lithology and fluid. The Batzle-Wang model is applied to distinguish between hydrocarbon gases and CO2 gas by estimating the fluid’s properties of CO2 gas. Based on the analysis of result the parameters Lambda-Rho and Mu-Rho, both parameters can distinguish the lithology and identify the hydrocarbon fluid content. The area around the C4 is indicated hydrocarbon in 9930 - 10000 ft depth with Lambda-Rho 30 – 31.79 GPa*g/cc and Mu-Rho 27 – 43 GPa*g/cc. Based on the Batzle-Wang Vp analysis, saturated CO2 gas is vulnerable at 16000-17000 ft/s where it is still in range Vp saturated hydrocarbon gas and distributed around the C4 well based on LMR analysis.

2020 ◽  
Vol 56 ◽  
pp. 207-229
Author(s):  
Diana B. Loomer ◽  
Kerry T.B. MacQuarrie ◽  
Tom A. Al

Isotopic analyses of natural gas from the Stoney Creek oil field in New Brunswick indicate carbon (δ13C) and hydrogen (δ2H) values in methane (C1) of -42.4 ± 0.7‰ VPDB and -220.9 ± 3.2‰ VSMOW, respectively. Isotopic data and a gas molecular ratio of 12 ± 1 indicate a wet thermogenic gas formed with oil near the onset of the oil-gas transition zone. The isotopic profiles of the C1–C5 hydrocarbon gases are consistent with kinetic isotope effect models. The Albert Formation of the Horton Group hosts the Stoney Creek oil field (SCOF) and the McCully gas field (MCGF) the only other gas-producing field in the province. Both are thermogenic in origin; however, the SCOF gas has a lower thermal maturity than the MCGS. Hydrocarbon gas composition in shallow aquifers across southeastern New Brunswick was also evaluated. Gas source interpretations based on δ13C and δ2H values are uncertain; oxidation and biogenic overprinting are common and complicate interpretation. The effect of oxidation on δ13C and δ2H values was apparent when C1 concentrations were ≤1 mg/L. In some samples with C1 concentrations >5 mg/L, isotopic discrimination methods point to a biogenic origin. However, the molecular ratios <75 and the presence of >C3 fractions, indicate a thermogenic origin. This suggests a thermogenic isotopic signature has been overprinted by biological activity.


2019 ◽  
pp. 60-64
Author(s):  
R. A. Eminov ◽  
N. Z. Mursalov

The paper is devoted to development of new methods for detection of leaks of hydrocarbon gas. It is determined that the wellknown fact on inverse interrelation of concentration of oxygen and such gases as N2 and CH4 can be used for remote determination of leaks of hydrocarbon gases. The gradient method for detection of leaks of natural gas composed of determination of two directions with minimum value of gradient of concentration of O2 in two fixed points and characterization of the point of crossing of them as a site of leak is suggested. The method of circles for detection of natural gases leaks site providing for determination of three points in supposed zone of leak and drawing up the circles around these points with growing radius with defined regularity is suggested. The point of crossing of all circles in some cycle of radiuses increase is presented as the gas leaks site. The carried out experimental researches held in various amounts of wind speed shown that when the wind speed surpass the fixed value location of gas leak site would be impossible due to effect of wind on spatial distribution and concentration of natural gas. Thus the proposed method is not designated for cases when a heavy wind occurs.


1980 ◽  
Vol 34 (4) ◽  
pp. 411-414 ◽  
Author(s):  
Dwain E. Diller ◽  
Ren Fang Chang

The feasibility of using Raman spectrometry for determining the composition of mixtures of natural gas components was examined. Raman intensity measurements were carried out on eight, gravimetrically prepared, binary gas mixtures containing methane, nitrogen, and isobutane at ambient temperature and at pressures to 0.8 MPa. The repeatability of the molar intensity ratio, ( I2/ y2)/( I1/ y1), where y1 is the concentration of component 1 in the mixture, and I1 is the intensity of the related line in the mixture spectrum, was examined. The compositions of two gravimetrically prepared methane-nitrogen-isobutane gas mixtures were determined spectrometrically with an estimated precision of about 0.001 in the mole fraction. Typical differences from the gravimetric concentrations were less than 0.002 in the mole fraction. The Raman spectrum of a gravimetrically prepared, eight component, hydrocarbon gas mixture was obtained to show that the Raman spectrometric method has potential for being applicable to natural gas type mixtures.


2019 ◽  
Vol 2 (179) ◽  
pp. 84-89
Author(s):  
Yosyp SVOREN

It is shown that with the change in pressure and temperature of natural gases in storages gas-holders, different installations one can separate water in necessary concentration from hydrates of hydrocarbon gases in their composition that forms its increased admixture in pipes and in the long run it influences the final heat-producing of the fuel. New approach was proposed as to the determing of heat-producing of natural gas supplied to consumers by the way of substantiation of the necessity to introduce such a unit as cubic metrobar (m3 bar). This would be conductive to determination of the correlation between heat-producing of produced natural gas and gas supplied to consumers, that is to say, determination of quality of consumed gas.


2021 ◽  
Vol 21 (4) ◽  
pp. 227-237
Author(s):  
V. S. Arutyunov ◽  
V. I. Savchenko ◽  
I. V. Sedov ◽  
A. V. Nikitin

The paper considers the growing importance of gas chemistry for the world economy and the related necessity of developing new, particularly noncatalytic technologies for the conversion of natural gas and other hydrocarbon gases into chemical products. The available and promising noncatalytic processes of their conversion into syngas as well as the direct methods for the synthesis of chemical products from methane, which is the main component of natural gas, are discussed.


2018 ◽  
Vol 58 (1) ◽  
pp. 209 ◽  
Author(s):  
Christopher J. Boreham ◽  
Dianne S. Edwards ◽  
Robert J. Poreda ◽  
Thomas H. Darrah ◽  
Ron Zhu ◽  
...  

Australia is about to become the premier global exporter of liquefied natural gas (LNG), bringing increased opportunities for helium extraction. Processing of natural gas to LNG necessitates the exclusion and disposal of non-hydrocarbon components, principally carbon dioxide and nitrogen. Minor to trace hydrogen, helium and higher noble gases in the LNG feed-in gas become concentrated with nitrogen in the non-condensable LNG tail gas. Helium is commercially extracted worldwide from this LNG tail gas. Australia has one helium plant in Darwin where gas (containing 0.1% He) from the Bayu-Undan accumulation in the Bonaparte Basin is processed for LNG and the tail gas, enriched in helium (3%), is the feedstock for helium extraction. With current and proposed LNG facilities across Australia, it is timely to determine whether the development of other accumulations offers similar potential. Geoscience Australia has obtained helium contents in ~800 Australian natural gases covering all hydrocarbon-producing sedimentary basins. Additionally, the origin of helium has been investigated using the integration of helium, neon and argon isotopes, as well as the stable carbon (13C/12C) isotopes of carbon dioxide and hydrocarbon gases and isotopes (15N/14N) of nitrogen. With no apparent loss of helium and nitrogen throughout the LNG industrial process, together with the estimated remaining resources of gas accumulations, a helium volumetric seriatim results in the Greater Sunrise (Bonaparte Basin) > Ichthys (Browse Basin) > Goodwyn–North Rankin (Northern Carnarvon Basin) accumulations having considerably more untapped economic value in helium extraction than the commercial Bayu-Undan LNG development.


2014 ◽  
Vol 675-677 ◽  
pp. 1341-1346
Author(s):  
Wu Yi ◽  
Wei Chao Tian

This paper analyses the origins of deep natural gas in Qianbei Subsag using a variety of analytical data such as the natural gas components, the isotope and the light hydrocarbon analysis combining with the development characteristics of hydrocarbon source rocks. The study results show as the following: The abundance of organic matter from hydrocarbon source rocks in Qianbei Subsag is high and dominated by humus type. Part of good hydrocarbon source rocks of Type II1 and Type II2 are developed in Yingcheng Formation and these are the major gas source rocks that is in the stage of postmaturity in evolution degree. The natural gas component is dominated by methane and non-hydrocarbon gas content is low. The isotope values of ethane are lighter and methane and ethane have an obvious phenomenon of carbon isotopic reversal. Parent material types of methane and ethane are from different sources. The sources of methane are biased to humic parent material while the sources of ethane are biased to sapropelic parent material.


2005 ◽  
Vol 8 (06) ◽  
pp. 561-572 ◽  
Author(s):  
Fabio E. Londono ◽  
Rosalind A. Archer ◽  
Thomas A. Blasingame

Summary The focus of this work is on the behavior of hydrocarbon-gas viscosity and gas density. The viscosity of hydrocarbon gases is a function of pressure, temperature, density, and molecular weight, while the gas density is a function of pressure, temperature, and molecular weight. This work presents new approaches for the prediction of gas viscosity and gas density for hydrocarbon gases over practical ranges of pressure, temperature, and composition. These correlations can be used for any hydrocarbon-gas production or transportation operations. In this work, we created a large database of measured gas viscosity and gas density. This database was used to evaluate existing models for gas viscosity and gas density. We also provide new models for gas density and gas viscosity, as well as optimization of existing models, using our new database. The objectives of this research are as follows:• To create a large-scale database of measured gas-viscosity and gas-density data. This database will contain all the information necessary to establish the applicability of various models for gas density and gas viscosity over a widerange of pressures and temperatures.• To evaluate a number of existing models for gas viscosity and gas density.• To develop new models for gas viscosity and gas density using our research database; these models are proposed and validated. For this study, we created a large database from existing sources available in the literature. The properties in our database include composition, viscosity, density, temperature, pressure, pseudo reduced properties, and the gas compressibility factor. We use this database to evaluate the applicability of existing models used to determine hydrocarbon-gas viscosity and hydrocarbon-gas density (or, more specifically, the gas z-factor). Finally, we developed new models and calculation approaches to estimate the hydrocarbon-gas viscosity, and we also provide an optimization of the existing equations of state (EOS) typically used for for the calculation of the gas z-factor. Introduction Hydrocarbon-Gas Viscosity. NIST—SUPERTRAP Algorithm. The state-of-the-art mechanism for the estimation of gas viscosity is most likely the computer program SUPERTRAP, developed at the U.S. Natl. Inst. of Standard sand Technology (NIST). SUPERTRAP was developed from pure-component and mixture data and is stated to provide estimates within engineering accuracy from the triple point of a given substance to temperatures of 1,340.33°F and pressures of 44,100 psia. Because the SUPERTRAP algorithm requires the composition for a particular sample, it generally would not be suitable for applications in which only the mixture gas gravity and compositions of any contaminants are known. Carr et al. Correlation. Carr et al. developed a two-step procedure to estimate hydrocarbon-gas viscosity. The first step is to determine the gas viscosity at atmospheric conditions (i.e., a reference condition). Once estimated, the viscosity at atmospheric pressure is then adjusted to conditions at temperature and pressure using a second correlation. The gas viscosity can be estimated with graphical correlations or using equations derived from these figures. Jossi et al. Correlation. Jossi et al. developed a relationship for the viscosity of pure gases and gas mixtures; this correlation includes pure components such as argon, nitrogen, oxygen, carbon dioxide, sulfur dioxide, methane, ethane, propane, butane, and pentane. This "residualviscosity" relationship can be used to predict gas viscosity with the "reduced"density at a specific temperature and pressure, as well as the molecular weight. The critical properties of the gas (i.e., the critical temperature and critical pressure) are also required. Our presumption is that the Jossi et al. correlation (or at least a similar type of formulation) can be used for the prediction of viscosity for pure hydrocarbon gases and hydrocarbon-gas mixtures. We will note that this correlation is rarely used for hydrocarbon gases (other correlations are preferred); however, we will consider the formulation given by Jossi etal. as a potential model for the correlation of hydrocarbon-gas-viscosity behavior.


1992 ◽  
Vol 31 (Part 2, No. 11B) ◽  
pp. L1580-L1582 ◽  
Author(s):  
Tatsuo Yoshinobu ◽  
Hideaki Mitsui ◽  
Yoichiro Tarui ◽  
Takashi Fuyuki ◽  
Hiroyuki Matsunami

Sign in / Sign up

Export Citation Format

Share Document