scholarly journals Optimization of parameters for diesel shaft speed control system

2019 ◽  
Vol 140 ◽  
pp. 10003
Author(s):  
Vladimir Markov ◽  
Victor Furman ◽  
Sergey Plakhov ◽  
Bowen Sa

This work presents a fuel supply electronic control system (model ESUVT.01) developed by Dizelavtomatika (Saratov) for the D50 (6 CHN 31.8/33) locomotive diesel engine manufactured by Penzadieselmash. In this system, the fuel supply process is controlled by a high-speed electro-hydraulic valve installed in the high-pressure line of the fuel system. A set of electrically controlled high pressure fuel pumps (mode 4ETN.03) with electro-hydraulic valves for the diesel was manufactured. This system can also control the engine speed. It was noted that the best quality indicators of the speed regulating process are provided by the PID control law. It was shown that for a diesel with high inertia, it is advisable to use the PI control law. Experimental studies were conducted to assess the influence of structure and parameters of this control system on the dynamic qualities of this diesel engine. The object of bench testing was a 1-PDG4D-type diesel-generator from the above-mentioned diesel engine and MPT-84/39 traction generator. The dependences of the duration of the transient process, the overspeed and the period of natural oscillations of the regulated parameter on the PI controller parameters were obtained. The necessity of optimizing the coefficients of proportional (P) and integral (I) components of the PI control law was confirmed. A method for optimizing the coefficients of proportional and integral components of the PI control law was proposed. The optimized coefficients for the transient acceleration process of the diesel engine according to the locomotive characteristic were obtained.

Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


2019 ◽  
Vol 2019.56 (0) ◽  
pp. K021
Author(s):  
Kento NAITO ◽  
Kazuhiko HIRAMOTO ◽  
Takanori SUGIYAMA ◽  
Hiroyuki KOSHIKIZAWA

Author(s):  
Ryan Paul Jenkins ◽  
Monika Ivantysynova

Pressure compensated vane pumps are an excellent solution for supplying hydraulic power with minimal waste in many automotive applications. An electrohydraulic pressure compensation control system for an automatic transmission supply that promises improved pressure response times over the baseline architecture is discussed. Suggested valve specifications are determined through calculations based on available data and refined via a validated simulation model of the proposed system. Two controller designs are formulated and compared: a basic PI control law and a cascaded model following controller including a nonlinear feedback linearization component. Simulations of the proposed system for a given duty cycle reveal that the nonlinear controller provides only minor improvements over a basic PI control law and is thus not an economical solution.


2000 ◽  
Vol 123 (3) ◽  
pp. 413-424 ◽  
Author(s):  
M. J. van Nieuwstadt ◽  
I. V. Kolmanovsky

Modern direct injection engines feature high pressure fuel injection systems that are required to control the fuel quantity very accurately. Due to limited manufacturing accuracy these systems can benefit from an on-line adaptation scheme that compensates for injector variability. Since cylinder imbalance affects many measurable signals, different sensors and algorithms can be used to equalize torque production by the cylinders. This paper compares several adaptation schemes that use different sensors. The algorithms are evaluated on a cylinder-by-cylinder simulation model of a direct injection high speed diesel engine. A proof of stability and experimental results are reported as well.


2012 ◽  
Vol 569 ◽  
pp. 758-762
Author(s):  
Guang Chao Liu ◽  
Ming Jun Liu

In high speed and accuracy positioning systems, torque control mode can achieve much better dynamic response and easy tuning of PID parameters compared to those of position and speed control modes. By adopting and implementing the improved PID control law with feed forward algorithm, the control system can provide much higher performance at high speed movement.


2021 ◽  
Author(s):  
Yuhua Wang ◽  
Guiyong Wang ◽  
Guozhong Yao ◽  
Lizhong Shen ◽  
Shuchao He

Abstract This paper studies the high-pressure common-rail diesel engine fuel supply compensation based on crankshaft fragment signals in order to improve the uneven phenomenon of diesel engine fuel supply and realize high efficiency and low pollution combustion. The experiments were conducted on a diesel engine with the model of YN30CR. Based on the characteristics of crankshaft fragment signals, the proportional integral (PI) control algorithm was used to quantify the engine working nonuniformity and extract the missing degree of fuel injection. The quantization method of each cylinder working uniformity and algorithm of fuel compensation control (FOC) based on crankshaft fragment signal were established, and the control strategy of working uniformity at different operating conditions was put forward. According to the principle of FOC control, a FOC control software module for ECU was designed. The FOC software module was simulated on ASCET platform. The results show that: Compared with the traditional quantization method, the oil compensation information extracted from crankshaft fragment signal has stronger anti-interference and more accurate parameters. FOC algorithm can accurately reflect the engine's working nonuniformity, and the control of the nonuniformity is reasonable. The compensation fuel amount calculated by FOC is high consistency with the fuel supply state of each cylinder set by experiment, which meets the requirement of accurate fuel injection control of common-rail diesel engine.


2020 ◽  
Vol 193 ◽  
pp. 01030
Author(s):  
Aleksandr S. Averyanov ◽  
Stanislav N. Vlasov ◽  
Evgeniy G. Rotanov ◽  
Anton A. Khokhlov

The results of experimental studies, the purpose of which is to assess the effect of heating of diesel mixed fuel on the cycle supply and fuel pressure in the supra-plunger space of the high-pressure fuel pump (HPFP) are presented. A correction device for cyclic fuel supply is presented (RF patent No. 122708). The principle of its action is described. The results of experimental studies of HPFPs with the proposed device for adjusting the cyclic fuel supply are presented.


Sign in / Sign up

Export Citation Format

Share Document