scholarly journals Modernization of high pressure fuel pump for operation on mixed rapeseed-mineral fuel

2020 ◽  
Vol 193 ◽  
pp. 01030
Author(s):  
Aleksandr S. Averyanov ◽  
Stanislav N. Vlasov ◽  
Evgeniy G. Rotanov ◽  
Anton A. Khokhlov

The results of experimental studies, the purpose of which is to assess the effect of heating of diesel mixed fuel on the cycle supply and fuel pressure in the supra-plunger space of the high-pressure fuel pump (HPFP) are presented. A correction device for cyclic fuel supply is presented (RF patent No. 122708). The principle of its action is described. The results of experimental studies of HPFPs with the proposed device for adjusting the cyclic fuel supply are presented.

2019 ◽  
Vol 140 ◽  
pp. 10003
Author(s):  
Vladimir Markov ◽  
Victor Furman ◽  
Sergey Plakhov ◽  
Bowen Sa

This work presents a fuel supply electronic control system (model ESUVT.01) developed by Dizelavtomatika (Saratov) for the D50 (6 CHN 31.8/33) locomotive diesel engine manufactured by Penzadieselmash. In this system, the fuel supply process is controlled by a high-speed electro-hydraulic valve installed in the high-pressure line of the fuel system. A set of electrically controlled high pressure fuel pumps (mode 4ETN.03) with electro-hydraulic valves for the diesel was manufactured. This system can also control the engine speed. It was noted that the best quality indicators of the speed regulating process are provided by the PID control law. It was shown that for a diesel with high inertia, it is advisable to use the PI control law. Experimental studies were conducted to assess the influence of structure and parameters of this control system on the dynamic qualities of this diesel engine. The object of bench testing was a 1-PDG4D-type diesel-generator from the above-mentioned diesel engine and MPT-84/39 traction generator. The dependences of the duration of the transient process, the overspeed and the period of natural oscillations of the regulated parameter on the PI controller parameters were obtained. The necessity of optimizing the coefficients of proportional (P) and integral (I) components of the PI control law was confirmed. A method for optimizing the coefficients of proportional and integral components of the PI control law was proposed. The optimized coefficients for the transient acceleration process of the diesel engine according to the locomotive characteristic were obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Vincenzo Petrone ◽  
Adolfo Senatore ◽  
Vincenzo D'Agostino

This paper presents the application of an improved Yasutomi correlation for lubricant viscosity at high pressure in a Newtonian elastohydrodynamic line contact simulation. According to recent experimental studies using high pressure viscometers, the Yasutomi pressure-viscosity relationship derived from the free-volume model closely represents the real lubricant piezoviscous behavior for the high pressure typically encountered in elastohydrodynamic applications. However, the original Yasutomi correlation suffers from the appearance of a zero in the function describing the pressure dependence of the relative free volume thermal expansivity. In order to overcome this drawback, a new formulation of the Yasutomi relation was recently developed by Bair et al. This new function removes these concerns and provides improved precision without the need for an equation of state. Numerical simulations have been performed using the improved Yasutomi model to predict the lubricant pressure-viscosity, the pressure distribution, and the film thickness behavior in a Newtonian EHL simulation of a squalane-lubricated line contact. This work also shows that this model yields a higher viscosity at the low-pressure area, which results in a larger central film thickness compared with the previous piezoviscous relations.


1989 ◽  
Vol 31 (10) ◽  
pp. 784-788
Author(s):  
A. P. Gulyaev ◽  
L. P. Sergienko ◽  
V. N. Filimonov ◽  
A. N. Mishchenko

2021 ◽  
pp. 4-12
Author(s):  

Experimental studies have revealed a significant impact of deformation of Сommon Rail injector parts on the fuel supply process. High pressures alter the structure of the fuel supply cy-cle. Theforward front of the fuel supply cycle begins with the stage of unloading the deformed parts of the injector. The rear front of the fuel supply cycle ends with the stage of deformation of the injector parts. The calculated and experimental determination of cyclic fuel supply gave similar results. The developed method of determining the duration of the injection cycle stages creates a basis for experimental verification of mathematical models. Keywords: injector, Common Rail, diesel, fuel system, electronic control, needle, fuel injection


2019 ◽  
Vol 52 (15) ◽  
pp. 193-198
Author(s):  
Florian Hartl ◽  
Jonas Brueckner ◽  
Christoph Ament ◽  
Julian Provost

2019 ◽  
Vol 10 (3) ◽  
pp. 5-15
Author(s):  
M. L Nuzhdin

Often in construction practice there is a need to strengthen the pile foundation of buildings and structures. The traditional methods include the implementation of additional, as a rule, bored piles with the subsequent erection of a grillage incorporating them into operation. Often, this work has to be done in the conditions of dense urban development, in cramped rooms of the basement, etc., which leads to significant technological difficulties. One of the alternative ways to strengthen pile foundations is the method of high-pressure group injection, which consists in injecting a movable cement-sand mortar into the soil under pressure that exceeds its structural strength. As a result, after its hardening, solid injection bodies are formed at the base, reinforcing the soil base. The article describes the results of experiments to assess the impact of the layout of hard inclusions on the deformability of the soil foundation of the pile foundation model. The experiments were carried out in a small soil tray, which was filled with medium-grained loose sand. The piles were modeled with metal rods, the pile grillage with a metal square stamp. The pile foundation model included 9 piles arranged in a square grid. As injection bodies, gravel grains of various sizes and shapes were used. The studies included 10 series of experiments (each experiment was repeated at least 3 times): the volume of the inclusions used, their sizes, the positioning step in the plan and in depth varied. As a result of the analysis of the performed experiments, conclusions were formulated regarding the purpose of the optimal layout of hard inclusions when strengthening the soil foundation of pile foundations by high-pressure injection of mobile cement-sand mixtures.


Sign in / Sign up

Export Citation Format

Share Document