scholarly journals Polymer-functionalized silica nanoparticles for improving water flood sweep efficiency in Berea sandstones

2020 ◽  
Vol 146 ◽  
pp. 02001 ◽  
Author(s):  
Alberto Bila ◽  
Jan Åge Stensen ◽  
Ole Torsæter

Extraction of oil trapped after primary and secondary oil production stages still poses many challenges in the oil industry. Therefore, innovative enhanced oil recovery (EOR) technologies are required to run the production more economically. Recent advances suggest renewed application of surface-functionalized nanoparticles (NPs) for oil recovery due to improved stability and solubility, stabilization of emulsions, and low retention on porous media. The improved surface properties make the NPs more appropriate to improve microscopic sweep efficiency of water flood compared to bare nanoparticles, especially in challenging reservoirs. However, the EOR mechanisms of NPs are not well understood. This work evaluates the effect of four types of polymer-functionalized silica NPs as additives to the injection water for EOR. The NPs were examined as tertiary recovery agents in water-wet Berea sandstone rocks at 60 °C. The NPs were diluted to 0.1 wt. % in seawater before injection. Crude oil was obtained from North Sea field. The transport of NPs though porous media, as well as nanoparticles interactions with the rock system, were investigated to reveal possible EOR mechanisms. The experimental results showed that functionalized-silica NPs can effectively increase oil recovery in water-flooded reservoirs. The incremental oil recovery was up to 14% of original oil in place (OOIP). Displacement studies suggested that oil recovery was affected by both interfacial tension reduction and wettability modification, however, the microscopic flow diversion due to pore plugging (log-jamming) and the formation of nanoparticle-stabilized emulsions were likely the relevant explanations for the mobilization of residual oil.

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 765
Author(s):  
Alberto Bila ◽  
Ole Torsæter

Laboratory experiments have shown higher oil recovery with nanoparticle (NPs) flooding. Accordingly, many studies have investigated the nanoparticle-aided sweep efficiency of the injection fluid. The change in wettability and the reduction of the interfacial tension (IFT) are the two most proposed enhanced oil recovery (EOR) mechanisms of nanoparticles. Nevertheless, gaps still exist in terms of understanding the interactions induced by NPs that pave way for the mobilization of oil. This work investigated four types of polymer-coated silica NPs for oil recovery under harsh reservoir conditions of high temperature (60 ∘C) and salinity (38,380 ppm). Flooding experiments were conducted on neutral-wet core plugs in tertiary recovery mode. Nanoparticles were diluted to 0.1 wt.% concentration with seawater. The nano-aided sweep efficiency was studied via IFT and imbibition tests, and by examining the displacement pressure behavior. Flooding tests indicated incremental oil recovery between 1.51 and 6.13% of the original oil in place (OOIP). The oil sweep efficiency was affected by the reduction in core’s permeability induced by the aggregation/agglomeration of NPs in the pores. Different types of mechanisms, such as reduction in IFT, generation of in-situ emulsion, microscopic flow diversion and alteration of wettability, together, can explain the nano-EOR effect. However, it was found that the change in the rock wettability to more water-wet condition seemed to govern the sweeping efficiency. These experimental results are valuable addition to the data bank on the application of novel NPs injection in porous media and aid to understand the EOR mechanisms associated with the application of polymer-coated silica nanoparticles.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Chuan Lu ◽  
Wei Zhao ◽  
Yongge Liu ◽  
Xiaohu Dong

Oil-in-water (O/W) emulsions are expected to be formed in the process of surfactant flooding for heavy oil reservoirs in order to strengthen the fluidity of heavy oil and enhance oil recovery. However, there is still a lack of detailed understanding of mechanisms and effects involved in the flow of O/W emulsions in porous media. In this study, a pore-scale transparent model packed with glass beads was first used to investigate the transport and retention mechanisms of in situ generated O/W emulsions. Then, a double-sandpack model with different permeabilities was used to further study the effect of in situ formed O/W emulsions on the improvement of sweep efficiency and oil recovery. The pore-scale visualization experiment presented an in situ emulsification process. The in situ formed O/W emulsions could absorb to the surface of pore-throats, and plug pore-throats through mechanisms of capture-plugging (by a single emulsion droplet) and superposition-plugging or annulus-plugging (by multiple emulsion droplets). The double-sandpack experiments proved that the in situ formed O/W emulsion droplets were beneficial for the mobility control in the high permeability sandpack and the oil recovery enhancement in the low permeability sandpack. The size distribution of the produced emulsions proved that larger pressures were capable to displace larger O/W emulsion droplets out of the pore-throat and reduce their retention volumes.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Emad W. Al-Shalabi ◽  
B. Ghosh

Oil recovery prediction and field pilot implements require basic understanding and estimation of displacement efficiency. Corefloods and glass micromodels are two of the commonly used experimental methods to achieve this. In this paper, waterflood recovery is investigated using layered etched glass micromodel and Berea sandstone core plugs with large permeability contrasts. This study focuses mainly on the effect of permeability (heterogeneity) in stratified porous media with no cross-flow. Three experimental setups were designed to represent uniformly stratified oil reservoir with vertical discontinuity in permeability. Waterflood recovery to residual oil saturation (Sor) is measured through glass micromodel (to aid visual observation), linear coreflood, and forced drainage-imbibition processes by ultracentrifuge. Six oil samples of low-to-medium viscosity and porous media of widely different permeability (darcy and millidarcy ranges) were chosen for the study. The results showed that waterflood displacement efficiencies are consistent in both permeability ranges, namely, glass micromodel and Berea sandstone core plugs. Interestingly, the experimental results show that the low permeability zones resulted in higher ultimate oil recovery compared to high permeability zones. At Sor microheterogeneity and fingering are attributed for this phenomenon. In light of the findings, conformance control is discussed for better sweep efficiency. This paper may be of help to field operators to gain more insight into microheterogeneity and fingering phenomena and their impact on waterflood recovery estimation.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 406-415 ◽  
Author(s):  
Arthur U. Rognmo ◽  
Noor Al-Khayyat ◽  
Sandra Heldal ◽  
Ida Vikingstad ◽  
Øyvind Eide ◽  
...  

Summary The use of nanoparticles for CO2-foam mobility is an upcoming technology for carbon capture, utilization, and storage (CCUS) in mature fields. Silane-modified hydrophilic silica nanoparticles enhance the thermodynamic stability of CO2 foam at elevated temperatures and salinities and in the presence of oil. The aqueous nanofluid mixes with CO2 in the porous media to generate CO2 foam for enhanced oil recovery (EOR) by improving sweep efficiency, resulting in reduced carbon footprint from oil production by the geological storage of anthropogenic CO2. Our objective was to investigate the stability of commercially available silica nanoparticles for a range of temperatures and brine salinities to determine if nanoparticles can be used in CO2-foam injections for EOR and underground CO2 storage in high-temperature reservoirs with high brine salinities. The experimental results demonstrated that surface-modified nanoparticles are stable and able to generate CO2 foam at elevated temperatures (60 to 120°C) and extreme brine salinities (20 wt% NaCl). We find that (1) nanofluids remain stable at extreme salinities (up to 25 wt% total dissolved solids) with the presence of both monovalent (NaCl) and divalent (CaCl2) ions; (2) both pressure gradient and incremental oil recovery during tertiary CO2-foam injections were 2 to 4 times higher with nanoparticles compared with no-foaming agent; and (3) CO2 stored during CCUS with nanoparticle-stabilized CO2 foam increased by more than 300% compared with coinjections without nanoparticles.


2006 ◽  
Vol 9 (06) ◽  
pp. 664-673 ◽  
Author(s):  
Harry L. Chang ◽  
Xingguang Sui ◽  
Long Xiao ◽  
Zhidong Guo ◽  
Yuming Yao ◽  
...  

Summary The first large-scale colloidal dispersion gel (CDG) pilot test was conducted in the largest oil field in China, Daqing oil field. The project was initiated in May 1999, and injection of chemical slugs was completed in May 2003. This paper provides detailed descriptions of the gel-system characterization, chemical-slug optimization, project execution, performance analysis, injection facility design, and economics. The improvements of permeability variation and sweep efficiency were demonstrated by lower water cut, higher oil rate, improved injection profiles, and the increase of the total dissolved solids (TDS) in production wells. The ultimate incremental oil recovery (defined as the amount of oil recovered above the projected waterflood recovery at 98% water cut) in the pilot area would be approximately 15% of the original oil in place (OOIP). The economic analysis showed that the chemical costs were approximately U.S. $2.72 per barrel of incremental oil recovered. Results are presented in 15 tables and 8 figures. Introduction Achieving mobility control by increasing the injection fluid viscosity and achieving profile modification by adjusting the permeability variation in depth are two main methods of improving the sweep efficiency in highly heterogeneous and moderate viscous-oil reservoirs. In recent years (Wang et al. 1995, 2000, 2002; Guo et al. 2000), the addition of high-molecular-weight (MW) water-soluble polymers to injection water to increase viscosity has been applied successfully in the field on commercial scales. Weak gels, such as CDGs, formed with low-concentration polymers and small amounts of crosslinkers such as the trivalent cations aluminum (Al3+) and chromium (Cr3+) also have been applied successfully for in-depth profile modification (Fielding et al. 1994; Smith 1995; Smith and Mack 1997). Typical behaviors of CDGs and testing methods are given in the literature (Smith 1989; Ranganathan et al. 1997; Rocha et al. 1989; Seright 1994). The giant Daqing oil field is located in the far northeast part of China. The majority of the reservoir belongs to a lacustrine sedimentary deposit with multiple intervals. The combination of heterogeneous sand layers [Dykstra-Parsons (1950) heterogeneity indices above 0.5], medium oil viscosities (9 to 11 cp), mild reservoir temperatures (~45°C), and low-salinity reservoir brines [5,000 to 7,000 parts per million (ppm)] makes it a good candidate for chemical enhanced-oil-recovery processes. Daqing has successfully implemented commercial-scale polymer flooding (PF) since the early 1990s (Chang et al. 2006). Because the PF process is designed primarily to improve the mobility ratio (Chang 1978), additional oil may be recovered by using weak gels to further improve the vertical sweep. Along with the successes of PF in the Daqing oil field, two undesirable results were also observed:high concentrations of polymer produced in production wells owing to the injection of large amounts of polymer (~1000 ppm and 50% pore volume) andthe fast decline in oil rates and increase in water cuts after polymer injection was terminated. In 1997, a joint laboratory study between the Daqing oil field and Tiorco Inc. was conducted to investigate the potential of using the CDG process, or the CDG process with PF, to further improve the recovery efficiency, lower the polymer production in producing wells, and prolong the flood life. The joint laboratory study was completed in 1998 with encouraging results (Smith et al. 2000). Additional laboratory studies to further characterize the CDG gellation process, optimize the formulation, and investigate the degradation mechanisms were conducted in the Daqing field laboratories before the pilot test. A simplistic model was used to optimize the slug designs and predict incremental oil recovery. Initial designs called for a 25% pore volume (Vp) CDG slug with 700 ppm polymer and the polymer-to-crosslinker ratio (P/X) of 20 in a single inverted five-spot patten. Predicted incremental recovery was approximately 9% of OOIP.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Wang ◽  
Bo Kang ◽  
Liehui Zhang ◽  
Beata Joanna Darowska ◽  
Peng Xu

In this paper, the flowing mechanism and function on the macroscopic and microscopic scale in the porous media of a widely used weak gel of an acrylamide based polymer crosslinked with chromium(III) were studied. Innovative microscopic plane visualization model was designed for microscopic scale experiment and sand pack physical model for macroscopic scale. The microscopic displacing experiments indicate that weak gel mainly intrudes into big pores rather than small ones, which can improve the conformance horizontally and increase the sweep efficiency benefiting from fluid diversion. Additionally, due to good viscoelasticity of weak gel, the negative pressure effect was formed enhancing oil recovery flow from small pore throats. Results of macroscopic physical sand pack flow experiment indicate positive influence of weak gel on vertical conformance control. Although the high permeable layer was not completely blocked, the oil recovery improved as a result of weak gel movement by continuous water flooding. Experiments results lead to conclusion, the primary function of weak gel is oil displacement, profile modification is secondary, and its effect is temporary.


2012 ◽  
Vol 616-618 ◽  
pp. 257-262 ◽  
Author(s):  
Ming Ming Lv ◽  
Shu Zhong Wang ◽  
Ze Feng Jing ◽  
Ming Luo

Foam has been used for several decades to decrease the mobility of drive gas or steam, thereby increasing the reservoir sweep efficiency and enhancing the oil recovery. The optimization of the operations requires a thorough understanding of the physical aspects involved in foam flow through porous media. The present paper aims mainly at reviewing experimental and modeling studies on foam flow in porous media particularly during the last decade, to stress the new achievements and highlight the areas that are less understood. X-ray computed tomography (CT) is a useful tool to study in-situ foam behaviors in porous media and new findings were obtained through this technology. The population-balance model was improved in different forms by researchers.


2018 ◽  
Vol 2 (3) ◽  
pp. 38 ◽  
Author(s):  
Ali Telmadarreie ◽  
Japan Trivedi

Inadequate sweep efficiency is one of the main concerns in conventional heavy oil recovery processes. Alternative processes are therefore needed to increase heavy oil sweep efficiency. Foam injection has gained interest in conventional oil recovery in recent times as it can control the mobility ratio and improve the sweep efficiency over chemical or gas flooding. However, most of the studies have focused on light crude oil. This study aims to investigate the static and dynamic performances of foam and polymer-enhanced foam (PEF) in the presence of heavy oil. Static and dynamic experiments were conducted to investigate the potential of foam and PEF for heavy oil recovery. Static analysis included foam/PEF stability, decay profile, and image analysis. A linear visual sand pack was used to visualize the performance of CO2 foam and CO2 PEF in porous media (dynamic experiments). Nonionic, anionic, and cationic surfactants were used as the foaming agents. Static stability results showed that the anionic surfactant generated relatively more stable foam, even in the presence of heavy oil. Slower liquid drainage and collapse rates for PEF compared to that of foam were the key observations through foam static analyses. Besides improving heavy oil recovery, the addition of polymer accelerated foam generation and propagation in porous media saturated with heavy oil. Visual analysis demonstrated more stable frontal displacement and higher sweep efficiency of PEF compared to conventional foam flooding. Unlike foam injection, lesser channeling (foam collapse) was observed during PEF injection. The results of this study will open a new insight on the potential of foam, especially polymer-enhanced foam, for oil recovery of those reservoirs with viscous oil.


Sign in / Sign up

Export Citation Format

Share Document