scholarly journals Structure-texture peculiarities influence on petrophysical properties of Neftekumsk carbonate sediments

2020 ◽  
Vol 164 ◽  
pp. 01007
Author(s):  
Natalia Yeriomina ◽  
Vladimir Gridin ◽  
Zinaida Sterlenko ◽  
Yelena Tumanova ◽  
Katerina Chernenko

The analysis of structure-texture peculiarities of carbonate sediments of Neftekumsk’ reservoir within the limits of Zimne-Stavkinsko- Pravoberezhny field was realized in the field of massive bioherm buildups and interreef lowerings in accordance with data of the core analyses. The existing pore space was divided into structure-texture classes. The correlations between petrofabrics and petrophysical parameters were determined. The received data can be used for describing of the three- dimensional distribution of petrophysical properties with the aim to increase the quality of three-dimensional (3-D) geological models.

2005 ◽  
Vol 5 (9) ◽  
pp. 2333-2340 ◽  
Author(s):  
R. Scheirer ◽  
S. Schmidt

Abstract. A new algorithm is presented to reproduce the three-dimensional structure of clouds from airborne measurements of microphysical parameters. Data from individual flight legs are scanned for characteristic patterns, and the autocorrelation functions for several directions are used to extrapolate the observations along the flight path to a full three-dimensional distribution of the cloud field. Thereby, the mean measured profiles of microphysical parameters are imposed to the cloud field by mapping the measured probability density functions onto the model layers. The algorithm was tested by simulating flight legs through synthetic clouds (by means of Large Eddy Simulations (LES)) and applied to a stratocumulus cloud case measured during the first field experiment of the EC project INSPECTRO (INfluence of clouds on the SPECtral actinic flux in the lower TROposphere) in East Anglia, UK. The number and position of the flight tracks determine the quality of the retrieved cloud field. If they provide a representative sample of the entire field, the derived pattern closely resembles the statistical properties of the real cloud field.


2004 ◽  
Vol 4 (6) ◽  
pp. 8609-8625 ◽  
Author(s):  
R. Scheirer ◽  
S. Schmidt

Abstract. A new algorithm is presented to retrieve the three-dimensional structure of clouds from airborne measurements of microphysical parameters. Data from individual flight legs are scanned for characteristic patterns, and the autocorrelation functions for several directions are used to extrapolate the observations along the flight path to a full three-dimensional distribution of the cloud field. Thereby, the mean measured profiles of microphysical parameters are imposed to the cloud field by mapping the measured probability density functions onto the model layers. The algorithm was tested by simulating flight legs through synthetic clouds (by means of Large Eddy Simulations (LES)) and applied to a stratocumulus cloud case measured during the first field experiment of the EC project INSPECTRO (INfluence of clouds on the SPECtral actinic flux in the lower TROposphere) in East Anglia, UK. The number and position of the flight tracks determine the quality of the retrieved cloud field. If they provide a representative sample of the entire field, the derived pattern closely resembles the statistical properties of the real cloud field.


Author(s):  
John H. Doveton

Formation lithologies that are composed of several minerals require multiple porosity logs to be run in combination in order to evaluate volumetric porosity. In the most simple solution model, the proportions of multiple components together with porosity can be estimated from a set of simultaneous equations for the measured log responses. These equations can be written in matrix algebra form as: . . . CV = L . . . where C is a matrix of the component petrophysical properties, V is a vector of the component unknown proportions, and L is a vector of the log responses of the evaluated zone. The equation set describes a linear model that links the log measurements with the component mineral properties. Although porosity represents the proportion of voids within the rock, the pore space is filled with a fluid whose physical properties make it a “mineral” component. If the minerals, their petrophysical properties, and their proportions are either known or hypothesized, then log responses can be computed. In this case, the procedure is one of forward-modeling and is useful in situations of highly complex formations, where geological models are used to generate alternative log-response scenarios that can be matched with actual logging measurements in a search for the best reconciliation between composition and logs. However, more commonly, the set of equations is solved as an “inverse problem,” in which the rock composition is deduced from the logging measurements. Probably the earliest application of the compositional analysis of a formation by the inverse procedure applied to logs was by petrophysicists working in Permian carbonates of West Texas, who were frustrated by complex mineralogy in their attempts to obtain reliable porosity estimates from logs, as described by Savre (1963). Up to that time, porosities had been commonly evaluated from neutron logs, but the values were excessively high in zones that contained gypsum, caused by the hydrogen within the water of crystallization. The substitution of the density log for the porosity estimation was compromised by the occurrence of anhydrite as well as gypsum.


2016 ◽  
Vol 672 ◽  
pp. 71-79 ◽  
Author(s):  
Simon Frølich ◽  
Hanna Leemreize ◽  
Jesper Skovhus Thomsen ◽  
Henrik Birkedal

Underwater attachment is a significant challenge, for which we have no good general solutions in our technology. Yet, a number of biological organisms have evolved solutions to this problem. One intriguing approach to underwater attachment is that of the marine bivalve mussel Anomia simplex that uses a biomineralized byssus to permanently anchor itself to substrates. The byssus has a highly complex hierarchical structure and contains over 90 wt% CaCO3. The byssus features a complex set of porosities, presumed to be highly important for the function of the attachment system. The pore space is the main focus of the present work. We characterize the three dimensional distribution of pore spaces in the byssus using micro-computed tomography (µCT) through a combination of in house mCT and high resolution synchrotron µCT. The pore structures are observed to fall into distinct categories in various parts of the byssus. We discuss the branching of one set of pores that reach the byssus substrate interface in particular. They form a network reaching the byssus surface that we now visualize in three dimensions.


2019 ◽  
pp. 45-51
Author(s):  
Uliana Yu. Solopakhina

In recent years, there has been a downward trend in easily recoverable hydrocarbon reserves in the Cretaceous sediments of Western Siberia. In this regard, interest in the horizon US2 has increased. Collectors of this horizon have a complex structure, which leads to the appearance of significant errors in geological models. The development of the methodological basis for the analysis of the accuracy of geological models, in particular three-dimensional, can solve this issue.The article gives a technique for analyzing the quality of a 3D geological model: a case study of horizon US2. As a result of the work, the following conclusions were drawn: firstly, there is the need to update geological models after drilling each well; secondly, the possible causes of the discrepancy between the actual and forecasted indices are revealed; thirdly, usage a map of the residuals of the absolute elevations of the horizon US2, as additional information, can minimize risks when drilling wells and increase the reliability of 3D geological model.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


Author(s):  
Tomoko Ehara ◽  
Shuji Sumida ◽  
Tetsuaki Osafune ◽  
Eiji Hase

As shown previously, Euglena cells grown in Hutner’s medium in the dark without agitation accumulate wax as well as paramylum, and contain proplastids showing no internal structure except for a single prothylakoid existing close to the envelope. When the cells are transferred to an inorganic medium containing ammonium salt and the cell suspension is aerated in the dark, the wax was oxidatively metabolized, providing carbon materials and energy 23 for some dark processes of plastid development. Under these conditions, pyrenoid-like structures (called “pro-pyrenoids”) are formed at the sites adjacent to the prolamel larbodies (PLB) localized in the peripheral region of the proplastid. The single prothylakoid becomes paired with a newly formed prothylakoid, and a part of the paired prothylakoids is extended, with foldings, in to the “propyrenoid”. In this study, we observed a concentration of RuBisCO in the “propyrenoid” of Euglena gracilis strain Z using immunoelectron microscopy.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Author(s):  
Mark Oprenko

The definition of the multimorbidity concept reveals insufficient specificity of the comorbidity and multimorbidity definitions and, as a result, confusion in the use of these terms. Most authors are unanimous that the “core” of multimorbidity is presence of more than one disease in a patient. These coexisting diseases can be pathogenetically interconnected and non-interconnected. Regardless, the degree of multimorbidity always affects prognosis and quality of life.


Sign in / Sign up

Export Citation Format

Share Document