scholarly journals Research on Properties of X-Ray Detection Film Based on Thallium Doped Cesium Iodide

2021 ◽  
Vol 252 ◽  
pp. 02072
Author(s):  
Yang Yanbei ◽  
Tian Chunhui ◽  
Liu Shuang

As X-ray detection imaging has a wide range of applications in medicine, industry, public safety, etc., it is of great significance to study its imaging mechanism and improve its imaging performance. Based on the process of X-ray luminescence in the scintillator material, this paper established a simulation model using a microcrystalline column structure to investigate the relationship between the thickness of the detection film and the light conversion efficiency. With the help of the simulation tool MATLAB, the Monte Carlo method was used to simulate the light conversion process of X-ray in the film, and the results were obtained as follows. Under the condition of other parameters unchanged, the luminous efficiency reached the peak value with the increase of the film thickness, and then gradually decreased with the increase of film thickness. The reason why the conversion efficiency in the early stage increases with the increase of the film thickness is that the film is in a saturated state, and increasing the thickness can cause more X-ray particles to be converted. As the film thickness increases, more fluorescent photons are absorbed as they propagate in the film, resulting in a gradual decrease in conversion efficiency. Therefore, an appropriate film thickness can be selected based on the simulation results to obtain the ideal light conversion efficiency.

1993 ◽  
Vol 297 ◽  
Author(s):  
R.I. Johnson ◽  
G.B. Anderson ◽  
J.B. Boyce ◽  
D.K. Fork ◽  
P. Mei ◽  
...  

This paper describes new results on the relationship between the grain size, mobility, and Si (111) x-ray peak intensity of laser crystallized amorphous silicon as a function of the laser fluence, shot density, substrate temperature, and film thickness. These observations include an unexpected narrow peak found in the silicon (111) x- ray peak intensity, which occurs at a specific laser fluence for a given film thickness and substrate temperature. Amorphous silicon materials processed at laser energy densities defined by this peak exhibit exceptionally large grain sizes and electron mobilities that cannot be obtained at any other energy and shot density combination above or below the energy at which the Si (111) x-ray peak intensity maximum occurs.


1974 ◽  
Vol 96 (3) ◽  
pp. 472-479 ◽  
Author(s):  
S. H. Loewenthal ◽  
R. J. Parker ◽  
E. V. Zaretsky

An empirical elastohydrodynamic (EHD) film thickness formula for predicting the minimum film thickness occurring within heavily loaded contacts (maximum Hertz stresses above 1.04 × 109 N/m2 (150,000 psi)) was developed. The formula was based upon X-ray film thickness measurements made with synthetic paraffinic, fluorocarbon, Type II ester and polyphenyl ether fluids covering a wide range of test conditions. Comparisons were made between predictions from an isothermal EHD theory and the test data. The deduced relationship was found to adequately reflect the high-load dependence exhibited by the measured data. The effects of contact geometry, material and lubricant properties on the form of the empirical model are also discussed.


2012 ◽  
Vol 706-709 ◽  
pp. 1713-1718 ◽  
Author(s):  
Luc Salvo ◽  
Marco Di Michiel ◽  
Mario Scheel ◽  
Pierre Lhuissier ◽  
B. Mireux ◽  
...  

X-ray micro-tomography has been applied recently in a wide range of research fields (damage in materials, solidification …). Thanks to the high flux of synchrotrons and specific cameras the total time to acquire a scan was considerably reduced. The use of a specific camera based on CMOS technology allows dividing the acquisition time for a complete scan by a factor of 100. Therefore we have been able to perform in situ solidification of aluminium-copper alloys at high cooling rates (between 1 and 10°C/s) and we will show results concerning the evolution of the microstructure in 3D in the early stage of solidification, in particular the morphology of the solid phase and the kinetics of growth.


2006 ◽  
Vol 321-323 ◽  
pp. 1056-1059 ◽  
Author(s):  
Jung Min Kim ◽  
Ho Kyung Kim ◽  
Min Ho Cheong ◽  
Min Kook Cho ◽  
Cheol Soon Shon ◽  
...  

Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb) phosphor screen is the most popular X-ray converter in diagnostic radiology. We have investigated the fundamental imaging performance of Gd2O2S:Tb screens in terms of X-ray sensitivity and MTF (modulation-transfer function). The measurements were performed for a wide range of coverages (34 – 135 mg/cm2) by using a conventional film radiographic method. In addition, CsI:Tl having columnar structure was also investigated.


2011 ◽  
Vol 393-395 ◽  
pp. 1562-1568
Author(s):  
Jia Ying Sun ◽  
Xin Gu

The paper aims to study the influence of furized gypsum fly ash three constituent mixture subtle structure to performance by analyzing furized gypsum fly ash three constituent IR, SEM, X-ray phase and DTA. The results show that the reason why furized gypsum fly ash three constituent has the characteristics of high strength in the early stage and good endurance quality is that furized gypsum fly ash concrete has the double actived effect of alkali-activated and sulfate-activated. The development of sclerotium strength mainly relies on ettringite and hydrated calcium silicate gel. During the process of hydration, ettringite and CSH gel hydration increase continuously, hardened structure becomes dense and strength continues to increase.


2004 ◽  
Vol 31 (9) ◽  
pp. 2594-2605 ◽  
Author(s):  
Wei Zhao ◽  
Goran Ristic ◽  
J. A. Rowlands

Author(s):  
C J Hooke ◽  
Y P Kakoullis

All previous analyses of slippers in axial piston pumps have assumed that the slipper running surface was perfectly flat and have all failed to explain the satisfactory performance of these bearings. It has been suggested, however, that slippers in axial piston pumps may depend, for their successful operation, on the small deviations from a perfect flat of the slipper surface. This paper examines the relationship between such a non-flatness and the minimum film thickness produced under steady operating conditions. It is shown that a very wide range of slipper non-flatnesses can lead to satisfactory slipper performance and that the minimum film thickness predicted is remarkably insensitive to the actual amount of deviation from flat.


2012 ◽  
Vol 262 ◽  
pp. 291-296 ◽  
Author(s):  
Rui Zhi Shi ◽  
Kai Bo Fan ◽  
Xiao Zhou ◽  
Kun Yang ◽  
Han Zhong Shi

The print online detection technology contains wide range of content, for instance alignment inspection, defect detection and color detection, among them the color detection is the most difficult. In this paper, IGT printability tester is used to produce different ink film thickness samples of the yellow, magenta, cyan, black and map spot colors brown, blue, green, red, purple and other colors. Based on large number of experiment data collected, though mathematical modeling, data analysis, experimental validation and model updating, a closed-loop control model and techniques based on the chromaticity detection are proposed. By establishing the model of the relationship between the chromaticity value and the ink film thickness, the relationship between the ink film thickness and the ink key opening, the numerical calculation between the chromaticity and the ink key opening is achieved. The basic method of chromaticity closed-loop control is: when printing began, the model calculates the initial ink key opening with the ink preset algorithm, and set the ink key opening. After entering the print state, the model detects the RGB value of print by the machine vision technology, and converts the RGB value to CIE LAB values by color space conversion and gamut mapping. Then the model compares the Lab values with the standard values, determines whether the color-difference overrun. If the color-difference is within the allowable range, the model maintains the original amount of ink and ink key opening. If it exceeds the limit value, the model quickly calculates the deviation of the ink amount, and offers the ink key opening which is corresponding to the adjustment, feedbacks it to the print control center, resulting in the ink key response in order to achieve the real-time adjustment of the print ink amount. Compared with the control method of the ink amount based on density detection, the chromatic detection method is more accurate, and has better application prospects.


2006 ◽  
Vol 15-17 ◽  
pp. 982-988
Author(s):  
Sang Hoon Lee ◽  
No Jin Park ◽  
David P. Field ◽  
Paul R. Besser

For optimum fabrication and usage of Cu films, an understanding of the relationship between processing and microstructure is required. The existence of twins is another significant factor for texture development in Cu films. Texture character and strength in the Cu film is dependent on the twin boundary development that is a function of processing conditions and film thickness. In this study, determination of grain growth and texture in the sputtered and electroplated Cu films during annealing was performed for films of 100, 480 and 850 nm in thickness deposited on a Ta(25 nm)/Si wafer. The texture was measured by X-ray pole figure. The effect of film thickness on the annealing texture in the sputtered and electroplated Cu films is examined and discussed.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2104
Author(s):  
Yecheol Rho ◽  
Jun Ha Kim ◽  
Byoungseok Min ◽  
Kyeong Sik Jin

Porcine pepsin is a gastric aspartic proteinase that reportedly plays a pivotal role in the digestive process of many vertebrates. We have investigated the three-dimensional (3D) structure and conformational transition of porcine pepsin in solution over a wide range of denaturant urea concentrations (0–10 M) using Raman spectroscopy and small-angle X-ray scattering. Furthermore, 3D GASBOR ab initio structural models, which provide an adequate conformational description of pepsin under varying denatured conditions, were successfully constructed. It was shown that pepsin molecules retain native conformation at 0–5 M urea, undergo partial denaturation at 6 M urea, and display a strongly unfolded conformation at 7–10 M urea. According to the resulting GASBOR solution models, we identified an intermediate pepsin conformation that was dominant during the early stage of denaturation. We believe that the structural evidence presented here provides useful insights into the relationship between enzymatic activity and conformation of porcine pepsin at different states of denaturation.


Sign in / Sign up

Export Citation Format

Share Document