The Effects of Non-Flatness on the Performance of Slippers in Axial Piston Pumps

Author(s):  
C J Hooke ◽  
Y P Kakoullis

All previous analyses of slippers in axial piston pumps have assumed that the slipper running surface was perfectly flat and have all failed to explain the satisfactory performance of these bearings. It has been suggested, however, that slippers in axial piston pumps may depend, for their successful operation, on the small deviations from a perfect flat of the slipper surface. This paper examines the relationship between such a non-flatness and the minimum film thickness produced under steady operating conditions. It is shown that a very wide range of slipper non-flatnesses can lead to satisfactory slipper performance and that the minimum film thickness predicted is remarkably insensitive to the actual amount of deviation from flat.

Author(s):  
C J Hooke

The elastohydrodynamic lubrication of point contacts is examined and results for the minimum film thickness are presented for a wide range of radius ratios and operating conditions. The results are compared with the predictions of the appropriate regime formulae. Although these formulae give a reasonable estimate of the contact's behaviour, the actual clearances are often substantially different, particularly close to the regime boundaries. Interpolation equations for seven values of radius ratio are given and these should be sufficient to allow the minimum clearance to be estimated for most isoviscous point contacts.


Lubricants ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 55
Author(s):  
Toshiharu Kazama

A theoretical model of a slipper with multi-lands and multi-grooves for swashplate type axial piston pumps and motors was established, including surface interactions. Further, a numerical simulation was conducted under an unsteady state and mixed lubrication conditions. Four model configurations were considered: A slipper with a single main land; a slipper with inner and main lands and a groove; a slipper with outer and main lands and a groove; and a slipper with inner, main, and outer lands with two grooves. Numerical solutions were obtained across a wide range of operating conditions in terms of center clearance, pad attitude, contact pressure, flow rate, friction torque, power loss, and stiffness. The motion and characteristics were differentiated into two groups: Slippers with a single-land and an annex inner-land; and slippers with an annex outer-land and a triple-land. The single-land and annex inner-land slippers exhibited smaller pad swing, whereas the triple-land and annex outer-land slippers reduced contact pressure and power loss.


Author(s):  
C J Hooke ◽  
K Y Li

In overclamped axial piston pump slippers only part of the clamping load is carried by the hydrostatic pressures. The remainder has to be supported hydrodynamically and small amounts of non-flatness of the slipper surface are essential for successful operation. It is shown that, under centrally loaded conditions, the operating clearance does not vary greatly with the magnitude or profile of the surface non-flatness, provided that the surface is generally convex. Thus the film thickness under the slipper can be predicted with reasonable accuracy. Measured clearances closely match those calculated theoretically.


2012 ◽  
Vol 134 (11) ◽  
Author(s):  
Shu Wang

The volumetric efficiency is one of the most important aspects of system performance in the design of axial piston pumps. From the standpoint of engineering practices, the geometric complexities of the valve plate (VP) and its multiple interactions with pump dynamics pose difficult obstacles for optimization of the design. This research uses the significant concept of pressure carryover to develop the mathematical relationship between the geometry of the valve plate and the volumetric efficiency of the piston pump. For the first time, the resulting expression presents the theoretical considerations of the fluid operating conditions, the efficiency of axial piston pumps, and the valve plate designs. New terminology, such as discrepancy of pressure carryover (DPC) and carryover cross-porting (CoCp), is introduced to explain the fundamental principles. The important results derived from this study can provide clear recommendations for the definition of the geometries required to achieve an efficient design, especially for the valve plate timings. The theoretical results are validated by simulations and experiments conducted by testing multiple valve plates under various operating conditions.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 80 ◽  
Author(s):  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

Prediction of minimum film thickness is often used in practice for calculation of film parameter to design machine operation in full film regime. It was reported several times that majority of prediction formulas cannot match experimental data in terms of minimum film thickness. These standard prediction formulas give almost constant ratio between central and minimum film thickness while numerical calculations show ratio which spans from 1 to more than 3 depending on M and L parameters. In this paper, an analytical formula of this ratio is presented for lubricants with various pressure–viscosity coefficients. The analytical formula is compared with optical interferometry measurements and differences are discussed. It allows better prediction, compared to standard formulas, of minimum film thickness for wide range of M and L parameters.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


2021 ◽  
Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.


1971 ◽  
Vol 93 (2) ◽  
pp. 293-301 ◽  
Author(s):  
D. Summers-Smith

This paper gives details of the lives of 188 sets of filled P.T.F.E. piston rings in a variety of reciprocating compressors covering a wide range of operating conditions. Although satisfactory performance has been obtained in most cases, there has been a considerable experience of inconsistent behavior. This had led to the adoption of certain standardized practices based on the experience obtained so far in an attempt to increase the consistency of performance. In particular, these cover ring formulations and design, and the avoidance of trace quantities of lubricant.


Author(s):  
K. Singh ◽  
M. Sharabi ◽  
R. Jefferson-Loveday ◽  
S. Ambrose ◽  
C. Eastwick ◽  
...  

Abstract In the case of aero-engine, thin lubricating film servers dual purpose of lubrication and cooling. Prediction of dry patches or lubricant starved region in bearing or bearing chambers are required for safe operation of these components. In the present work thin liquid film flow is numerically investigated using the framework of the Eulerian thin film model (ETFM) for conditions which exhibit partial wetting phenomenon. This model includes a parameter that requires adjustment to account for the dynamic contact angle. Two different experimental data sets have been used for comparisons against simulations, which cover a wide range of operating conditions including varying the flow rate, inclination angle, contact angle, and liquid-gas surface tension coefficient. A new expression for the model parameter has been proposed and calibrated based on the simulated cases. This is employed to predict film thickness on a bearing chamber which is subjected to a complex multiphase flow. From this study, it is observed that the proposed approach shows good quantitative comparisons of the film thickness of flow down an inclined plate and for the representative bearing chamber. A comparison of model predictions with and without wetting and drying capabilities is also presented on the bearing chamber for shaft speed in the range of 2,500 RPM to 10,000 RPM and flow rate in the range of 0.5 liter per minute (LPM) to 2.5 LPM.


Sign in / Sign up

Export Citation Format

Share Document