scholarly journals Reconfiguration Performance of the Urban Power Distribution System Based on the Genetic-Ant Colony Fusion Algorithm

2021 ◽  
Vol 257 ◽  
pp. 02062
Author(s):  
Longju Bai

This study aims to enhance the reliability of the urban power grid system and decrease the economic loss due to power network faults. Based on the analysis of the traditional algorithms for restructuring the urban distribution system after faults, this study proposes an upgraded genetic algorithm (GA) and ant colony algorithm (ACA) and combines these two to overcome the limitations of the local optimum of GAs and low convergence speed of ACAs. Taking the IEEE33-node system as the research object, the network loss, maximum recovery of the power-loss load, and the number of switching operations as the objective function, the impact of different algorithms on the restoration and reconfiguration of the distribution system was examined according to MATLAB system simulation and the optimal algorithm for the reconfiguration of the urban distribution system failure recovery. The experimental results revealed that compared with the current distribution system reconfiguration algorithm, the genetic-ant colony algorithm (GACA) has higher algorithm time efficiency and solution accuracy and can markedly decrease the recovery time and improve the impact of the distribution system in a short period. Overall, the proposed GACA is an efficient self-healing algorithm of urban distribution systems and useful for augmenting the reliability of the urban power system.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Adeseye Amos Ogunsina ◽  
Moses Omolayo Petinrin ◽  
Olutomilayo Olayemi Petinrin ◽  
Emeka Nelson Offornedo ◽  
Joseph Olawole Petinrin ◽  
...  

AbstractA system of power generation whereby the generating equipment is located close to the point of usage, thereby reducing losses and operation cost is called distributed generation (DG). However, it is imperative that DGs are sited such that the quality of power delivered is optimized and the total real power loss within the system minimized. This paper proposes an approach for optimum sizing and siting of DGs sizing in a power distribution system using Ant Colony Optimization (ACO) algorithm. To validate the algorithm the IEEE 30 bus standard test system was employed. A 92% decrease in real power loss within the system relative to the value before the connection of DGs was observed, while the minimum bus voltage increased from 0.656 per unit to 0.965 per unit. The results obtained from ACO are further verified by creating an ETAP model of the IEEE 30 bus system and simulating the impact of DG on the system. A significant reduction in total real power losses within the system and improvement in voltage profile was observed when the DGs are placed at the ACO derived sites relative to at other locations. Therefore, Ant Colony Algorithm can be used in deriving the optimum sites and sizes of DGs in a power distribution system.


2015 ◽  
Vol 799-800 ◽  
pp. 1278-1287
Author(s):  
Ibrahim M. Al-Yami

Electrical Distribution systems that are radially configured with one utility power source are inherently exposed to higher rates of outages and interruptions, due to failures of system components, including: transformers, breakers and switching devices. In addition, fault conditions can also be caused by weather, animals or human error. Historically in Saudi Arabia, many industrial and residential distribution networks suffered from these problems. Large-size, growing demand and cost — with the time requirements for enhancement projects — results in distributed generation (DG) — as online or backup —playing a key role in the residential, commercial and industrial sectors of the power system. In this paper, the value of DG — installed as an online power source for typical industrial distribution network in Saudi Arabia — is quantified by reliability indices that include System Average Interruption Duration Index (SAIDI), Customer Average Interruption Duration Index (CAIDI) and Energy Not Supplied (ENS). The study outcomes will provide power system engineers with the reliability benefits of DG penetration and an approach to assessing its installations, based on different factors such as size and location.


Author(s):  
Chunyu Liu ◽  
Fengrui Mu ◽  
Weilong Zhang

Background: In recent era of technology, the traditional Ant Colony Algorithm (ACO) is insufficient in solving the problem of network congestion and load balance, and network utilization. Methods: This paper proposes an improved ant colony algorithm, which considers the price factor based on the theory of elasticity of demand. The price factor is denominated in the impact on the network load which means indirect control of network load, congestion or auxiliary solution to calculate the idle resources caused by the low network utilization and reduced profits. Results: Experimental results show that the improved algorithm can balance the overall network load, extend the life of path by nearly 3 hours, greatly reduce the risk of network paralysis, and increase the profit of the manufacturer by 300 million Yuan. Conclusion: Furthermore, results shows that the improved method has a great application value in improving the network efficiency, balancing network load, prolonging network life and increasing network operating profit.


2020 ◽  
Vol 11 (1) ◽  
pp. 285
Author(s):  
Runze Wu ◽  
Jinxin Gong ◽  
Weiyue Tong ◽  
Bing Fan

As the coupling relationship between information systems and physical power grids is getting closer, various types of cyber attacks have increased the operational risks of a power cyber-physical System (CPS). In order to effectively evaluate this risk, this paper proposed a method of cross-domain propagation analysis of a power CPS risk based on reinforcement learning. First, the Fuzzy Petri Net (FPN) was used to establish an attack model, and Q-Learning was improved through FPN. The attack gain was defined from the attacker’s point of view to obtain the best attack path. On this basis, a quantitative indicator of information-physical cross-domain spreading risk was put forward to analyze the impact of cyber attacks on the real-time operation of the power grid. Finally, the simulation based on Institute of Electrical and Electronics Engineers (IEEE) 14 power distribution system verifies the effectiveness of the proposed risk assessment method.


2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


2014 ◽  
Vol 986-987 ◽  
pp. 377-382 ◽  
Author(s):  
Hui Min Gao ◽  
Jian Min Zhang ◽  
Chen Xi Wu

Heuristic methods by first order sensitivity analysis are often used to determine location of capacitors of distribution power system. The selected nodes by first order sensitivity analysis often have virtual high by first order sensitivities, which could not obtain the optimal results. This paper presents an effective method to optimally determine the location and capacities of capacitors of distribution systems, based on an innovative approach by the second order sensitivity analysis and hierarchical clustering. The approach determines the location by the second order sensitivity analysis. Comparing with the traditional method, the new method considers the nonlinear factor of power flow equation and the impact of the latter selected compensation nodes on the previously selected compensation location. This method is tested on a 28-bus distribution system. Digital simulation results show that the reactive power optimization plan with the proposed method is more economic while maintaining the same level of effectiveness.


2014 ◽  
Vol 529 ◽  
pp. 455-459
Author(s):  
Nan Xu ◽  
Shan Shan Li ◽  
Hao Ming Liu

Considering the probabilistic of the wind power and the solar power, a fault recovery method for distribution systems with the wind power and the solar power is presented in this paper. For the wind power, a simplified steady-state equivalent model of an asynchronous wind generator is added into the Jacobian matrix to consider the impact of the wind power on systems. For the solar power, its output is considered as an injected power which is related with solar irradiance. Three-point estimate is employed to solve the probabilistic power flow of distribution systems with the wind power and the solar power. The restoration is described as a multi-objective problem with the mean of the system loss and the number of switch operations. Fast elitist non-dominated sorting partheno-genetic algorithm is used to solve this multi-objective problem. IEEE 33-bus system is used as an example and the results show that the models and algorithms in this paper are efficient.


2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 141-149 ◽  
Author(s):  
Andres Felipe Panesso-Hernández ◽  
Juan Mora-Flórez ◽  
Sandra Pérez-Londoño

<p>The impedance-based approaches for fault location in power distribution systems determine a faulted line section. Next, these require of the estimation of the voltages and currents at one or both section line ends to exactly determine the fault location. It is a challenge because in most of the power distribution systems, measurements are only available at the main substation.  This document presents a modeling proposal of the power distribution system and an easy implementation method to estimate the voltages and currents at the faulted line section, using the measurements at the main substation, the line, load, transformer parameters and other serial and shunt connected devices and the power system topology. The approach here proposed is tested using a fault locator based on superimposed components, where the distance estimation error is lower than 1.5% in all of the cases. </p>


Sign in / Sign up

Export Citation Format

Share Document