scholarly journals Research and application of pressure decreasing technology of polymer material injection wells

2021 ◽  
Vol 261 ◽  
pp. 02012
Author(s):  
Taiwei Yang ◽  
Yu Yan ◽  
Shuzhao Guo ◽  
Qingqin Cai ◽  
Yang Yang ◽  
...  

Injecting polymer materials is an important means to improve the ultimate recovery, maintain stable production and improve the development effect of the oil field in the high water cut period. However, in the development process of polymer flooding, with the continuous increase of the cumulative polymer injection, the problem of high-pressure under-injection frequently occurs in the injection well. In this paper, based on geological characteristics and plugging material analysis, the causes of high pressure/under-injection and production characteristics of different types of measure wells. To study and optimize the rubber breaking, degradation and synergistic acidification liquid system that are applicable to different blockage conditions can effectively improve the adaptability of the blockage liquid system; Meanwhile, the formation of a quick plugging process with the characteristic of “single-stage single-step injection + prescription formula structure” can effectively improve the success rate of polymer plugging process measures, providing strong technical support for polymer flooding technology.

2013 ◽  
Vol 868 ◽  
pp. 645-650
Author(s):  
Lin Li

The parameters of reservoir impact all the sectors of oilfield developing after flood development, so methods of separate stratum injection allocation are researched for forecasting the petroleum reservoir performance accurately. The methods of separate stratum injection allocation are significative for remaining oil distribution, injection allocation of interval and the level of exploitation and administration in high water cut stage. First, we should derive injection-withdrawal ratio (IWR), gradient of pressure and water cut by material balance equation.The injection allocation of single well,injection wells and property of interval are determined by the research of split coefficient.We find the reservoir small error, lower water cut, high degree of reservoir recovery by anaysising the results of separate stratum injection allocation.The results show that separate stratum injection allocation is scientific and reasonable, simple and applied for the oil field in high water cut stage.


2013 ◽  
Vol 734-737 ◽  
pp. 1440-1444 ◽  
Author(s):  
Shang Ming Shi ◽  
Hua Bin Wei ◽  
Bo Li ◽  
Hong Lou ◽  
Dong Kai Huo

The study on distribution laws of remaining oil in high water cut stage is the difficulty of oil field development in the mid-to late period. Aiming at the long development time of Western Bei 2 area of Saertu oilfield in Daqing Oilfield and its complicated well history conditions undergone water flooding, polymer flooding and steam flooding, the 3D geological static model has been established in this test area based on the study on its structure characteristics and sedimentary features. By applying the method of fine reservoir numerical simulation, the paper completes the numerical simulation of remaining oil in the test area and summarizes types of remaining oil as well as their distribution laws in the test area, which provides a reliable basis for the further deployment and adjustment measures in the oilfield.


2021 ◽  
Vol 3 (1) ◽  
pp. 29-42
Author(s):  
M. Sh. Musayev ◽  
D. A. Musharova ◽  
B. Zh. Zhappasbayev ◽  
E. K. Orynbassar

In conditions of high depletion of oil fields and volatile oil prices, methods of enhanced oil recovery are becoming especially relevant, the use of which contributes to an increase in the oil recovery factor in addition to the use of secondary oil recovery methods. One of the technologies allowing to increase the oil recovery factor is polymer flooding technology, the distinctive advantage of which in comparison with other chemical methods is a wide range of application conditions and design variability during implementation. This paper presents the results of the application of polymer flooding technology in the oil field of Kazakhstan Zaburunye, which is in the high water-cut stage. To determine the strategy for the further implementation of polymer flooding technology and in order to find the optimal predictive development options, calculations were carried out on the developed hydrodynamic model.


Author(s):  
L.F. Lamas ◽  
V.E. Botechia ◽  
D.J. Schiozer ◽  
M.L. Rocha ◽  
M. Delshad
Keyword(s):  

2021 ◽  
Author(s):  
Dale Douglas Erickson ◽  
Greg Metcalf

Abstract This paper discusses the development and deployment of a specialized online and offline integrated model to simulate the CO2 (Carbon Dioxide) Injection process. There is a very high level of CO2 in an LNG development and the CO2 must be removed in order to prepare the gas to be processed into LNG. To mitigate the global warming effects of this CO2, a large portion of the CO2 Rich Stream (98% purity) is injected back into a depleted oil field. To reduce costs, carbon steel flowlines are used but this introduces a risk of internal corrosion. The presence of free water increases the internal corrosion risk, and for this reason, a predictive model discussed in this paper is designed to help operations prevent free water dropout in the network in real time. A flow management tool (FMT) is used to monitor the current state of the system and helps look at the impact of future events (startup, shutdowns etc.). The tool models the flow of the CO2 rich stream from the outlet of the compressor trains, through the network pipeline and manifolds and then into the injection wells. System behavior during steady state and transient operation is captured and analyzed to check water content and the balance of trace chemicals along with temperature and pressure throughout the network helping operators estimate corrosion rates and monitor the overall integrity of the system. The system has been running online for 24/7 for 2 years. The model has been able to match events like startup/shutdown, cooldowns and blowdowns. During these events the prediction of temperature/pressure at several locations in the field matches measured data. The model is then able to forecasts events into the future to help operations plan how they will operate the field. The tool uses a specialized thermodynamic model to predict the dropout of water in the near critical region of CO2 mixtures which includes various impurities. The model is designed to model startup and shutdown as the CO2 mixture moves across the phase boundary from liquid to gas or gas to liquid during these operations.


SPE Journal ◽  
2022 ◽  
pp. 1-18
Author(s):  
Marat Sagyndikov ◽  
Randall Seright ◽  
Sarkyt Kudaibergenov ◽  
Evgeni Ogay

Summary During a polymer flood, the field operator must be convinced that the large chemical investment is not compromised during polymer injection. Furthermore, injectivity associated with the viscous polymer solutions must not be reduced to where fluid throughput in the reservoir and oil production rates become uneconomic. Fractures with limited length and proper orientation have been theoretically argued to dramatically increase polymer injectivity and eliminate polymer mechanical degradation. This paper confirms these predictions through a combination of calculations, laboratory measurements, and field observations (including step-rate tests, pressure transient analysis, and analysis of fluid samples flowed back from injection wells and produced from offset production wells) associated with the Kalamkas oil field in Western Kazakhstan. A novel method was developed to collect samples of fluids that were back-produced from injection wells using the natural energy of a reservoir at the wellhead. This method included a special procedure and surface-equipment scheme to protect samples from oxidative degradation. Rheological measurements of back-produced polymer solutions revealed no polymer mechanical degradation for conditions at the Kalamkas oil field. An injection well pressure falloff test and a step-rate test confirmed that polymer injection occurred above the formation parting pressure. The open fracture area was high enough to ensure low flow velocity for the polymer solution (and consequently, the mechanical stability of the polymer). Compared to other laboratory and field procedures, this new method is quick, simple, cheap, and reliable. Tests also confirmed that contact with the formation rapidly depleted dissolved oxygen from the fluids—thereby promoting polymer chemical stability.


2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


1999 ◽  
Author(s):  
Wang Demin ◽  
Cheng Jiecheng ◽  
Li Qun ◽  
Li Lizhong ◽  
Zhao Changjiu

2021 ◽  
Vol 19 (3) ◽  
pp. 848-853
Author(s):  
Liliya Saychenko ◽  
Radharkrishnan Karantharath

To date, the development of the oil and gas industry can be characterized by a decline in the efficiency of the development of hydrocarbon deposits. High water cut-off is often caused by water breaking through a highly permeable reservoir interval, which often leads to the shutdown of wells due to the unprofitability of their further operation. In this paper, the application of straightening the profile log technology for injection wells of the Muravlenkovsky oil and gas field is justified. In the course of this work, the results of field studies are systematized. The reasons for water breakthrough were determined, and the main ways of filtration of the injected water were identified using tracer surveys. The use of CL-systems technology based on polyacrylamide and chromium acetate is recommended. The forecast of the estimated additional oil produced was made.


2008 ◽  
Author(s):  
He Liu ◽  
Pei Xiaohan ◽  
Peng Baiqi ◽  
Hou Yu ◽  
Wang Yumei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document