scholarly journals Application of magnetic nanoparticles Fe304 in the field of orthopedics and medicine

2021 ◽  
Vol 271 ◽  
pp. 04041
Author(s):  
Xunqin Fan ◽  
Shuan Liu ◽  
Ke Ruan

Magnetic nanoparticle Fe304 have super paramagnetic, biological cell compatibility, low toxicity, antibiosis and bacteriostasis, drug loading, sustained release and thermal effect. Using magnetic nanoparticies Fe304 as magnetic source, magnetic masoporous glass two-dimensional bone framework was synthesized under the action of external magnetic field, which provides growth space for bone repair, cell proliferation and metabolism, and contribute to mineralizing. The same time, The application of graphene, especially magnetic nanoparticles Fe304, in bone materials, bone repair and relatedmedicalfields was discussed.

Nanoscale ◽  
2015 ◽  
Vol 7 (39) ◽  
pp. 16470-16480 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Eunjoo Kim ◽  
Sang Won Jeong ◽  
Tae-Lin Ha ◽  
Sang-Im Park ◽  
...  

The cytotoxicity of magnetic nanoparticles-conjugated polymeric micelles encapsulated with an anticancer drug on cancer cells was enhanced by the synergistic effect of heat and the rapid release of the drug under an alternating magnetic field.


2011 ◽  
Vol 10 (03) ◽  
pp. 515-520 ◽  
Author(s):  
SI-HUA XIA ◽  
JUN WANG ◽  
ZHANG-XIAN LU ◽  
FEIYAN ZHANG

We report magneto-optical properties in a kerosene colloidal suspension of oleic acid coated Fe3O4 nanoparticles (~14 nm). The magnetic colloids (fluids) show birefringence under a magnetic field. Systematical studies of the on–off switch times upon application of the on–off magnetic field with varied experimental parameters indicate that the switch response time depends strongly on the strength of the magnetic field and the concentration of the magnetic nanoparticles in the fluid. The data can be explained in terms of the formation of magnetic nanoparticle chains under a magnetic field. The important magneto-optical properties of the magnetic fluids allow us to design a tunable optical switch.


NANO ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. 2050140
Author(s):  
Jia Chen ◽  
Haishan Deng ◽  
Shun Yao ◽  
Pan Ma ◽  
Minchi Cao ◽  
...  

Nano-hydroxyapatite crystals of different morphologies were synthesized by adding two types of amino acids (glycine and arginine) under hydrothermal conditions. The XRD, FTIR, and TEM characterizations of samples showed that the final product was pure hydroxyapatite with high crystallinity. Organic small-molecule amino acids exhibited a significant inhibitory effect on crystal growth during the synthesis process. This regulatory effect is related to the side chains of amino acids. The results of co-culturing with bone mesenchymal stem cells showed that the cell compatibility of nanoparticles differs based on their morphologies. The results of this study are significant for the fabrication of nano-hydroxyapatite with tunable morphology, which can have applications in the fields of bone repair and drug loading.


Nano LIFE ◽  
2015 ◽  
Vol 05 (02) ◽  
pp. 1550002 ◽  
Author(s):  
K. Kekalo ◽  
I. Baker ◽  
R. Meyers ◽  
J. Shyong

This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma- Fe 2 O 3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz.


Nano LIFE ◽  
2010 ◽  
Vol 01 (01n02) ◽  
pp. 17-32 ◽  
Author(s):  
ANDREW J. GIUSTINI ◽  
ALICIA A. PETRYK ◽  
SHIRAZ M. CASSIM ◽  
JENNIFER A. TATE ◽  
IAN BAKER ◽  
...  

The activation of magnetic nanoparticles (mNPs) by an alternating magnetic field (AMF) is currently being explored as technique for targeted therapeutic heating of tumors. Various types of superparamagnetic and ferromagnetic particles, with different coatings and targeting agents, allow for tumor site and type specificity. Magnetic nanoparticle hyperthermia is also being studied as an adjuvant to conventional chemotherapy and radiation therapy. This review provides an introduction to some of the relevant biology and materials science involved in the technical development and current and future use of mNP hyperthermia as clinical cancer therapy.


2021 ◽  
Vol 17 (8) ◽  
pp. 1668-1678
Author(s):  
Beizhi Zhang ◽  
Yunhui Chai ◽  
Kai Huang ◽  
Xuejie Wei ◽  
Zhiqing Mei ◽  
...  

As infection induced by the implant will lead to operation failure, the implant material must be endowed with certain antibacterial properties. Hydroxyapatite (HA) mesoporous microspheres have been widely used in bone repair due to their advantages, including simple synthesis, good osteogenic properties and drug loading capacity. In this study, vancomycin hydrochloride-loaded mesoporous hydroxyapatite microspheres with micro/nanosurface structures were synthesized to increase osteogenic differentiation and antibacterial ability. Phytic acid (IP6) was used as a template to prepare mesoporous hydroxyapatite microspheres composed of fibres, flakes and smooth surfaces by the hydrothermal homogeneous precipitation method, and the corresponding specific surface areas were 65.20 m2/g, 75.13 m2/g and 71.27 m2/g, respectively. Vancomycin hydrochloride (Van) was used as the drug model to study the drug loading and release characteristics of the microspheres, as well as the in vitro antibacterial properties after treatment. In addition, during cocultivation with MC3T3-E1 preosteoblasts, HA microspheres assembled via flakes exhibited better cell compatibility, which promoted cell proliferation, alkaline phosphatase (ALP) activity, and the formation of calcium nodules and increased the expression of osteogenic differentiation-related proteins such as Runx-2, osteopontin (OPN) and collagen I (COL I). These results indicated that the HA microspheres prepared in this experiment have broad application prospects in drug delivery systems and bone repair.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Weizhong Wei ◽  
Zhen Wang

Finite element numerical simulations were carried out in 2D geometry to calculate the magnetic force on magnetic nanoparticles under a specially fabricated electromagnet. The particle motion was modeled by a system of ordinary differential equations. The snapshots of trajectories of 4000 MNPs with and without magnetic field were analyzed and qualitatively found to be in agreement with camera visualizations of MNP movement in a container. The results of the analysis could be helpful for the design of electromagnetic field and motion analysis of magnetic particles for the delivery of magnetic materials in biomedical applications.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 183 ◽  
Author(s):  
Chenzhao Bai ◽  
Hongpeng Zhang ◽  
Lin Zeng ◽  
Xupeng Zhao ◽  
Laihao Ma

The wear debris in hydraulic oil or lubricating oil has a wealth of equipment operating information, which is an important basis for large mechanical equipment detection and fault diagnosis. Based on traditional inductive oil detection technology, magnetic nanoparticles are exploited in this paper. A new inductive oil detection sensor is designed based on the characteristics of magnetic nanoparticles. The sensor improves detection sensitivity based on distinguishing between ferromagnetic and non-ferromagnetic wear debris. Magnetic nanoparticles increase the internal magnetic field strength of the solenoid coil and the stability of the internal magnetic field of the solenoid coil. During the experiment, the optimal position of the sensor microchannel was first determined, then the effect of the magnetic nanoparticles on the sensor’s detection was confirmed, and finally the concentration ratio of the mixture was determined. The experimental results show that the inductive oil detection sensor made of magnetic nanoparticle material had a higher detection effect, and the signal-to-noise ratio (SNR) of 20–70 μm ferromagnetic particles was increased by 20%–25%. The detection signal-to-noise ratio (SNR) of 80–130 μm non-ferromagnetic particles was increased by 16%–20%. The application of magnetic nanoparticles is a new method in the field of oil detection, which is of great significance for fault diagnosis and the life prediction of hydraulic systems.


Author(s):  
Chin-Yih Hong ◽  
Ji-Ching Lai ◽  
Chia-Chung Tang

Manipulation of magnetic nanoparticles has many applications in several fields and the behaviors of magnetic nanoparticles subjected to rotating or alternating magnetic fields attracted more attention from biomedical applications. In an aqueous solution containing bio-functionalized magnetic nanoparticles, due to the interaction between biomolecules, these nanoparticles agglomerate and form clusters with various sizes and shapes. In this study, the behaviors of magnetic nanoparticle clusters in an aqueous solution under rotating magnetic fields were investigated. Due to the interaction between the rotating magnetic field and the net magnetic dipole moment, the clusters were subjected to forced vibration. Two motion modes of clusters were observed as the magnetic field rotated. These two modes are rotation and oscillation. The diameters of the magnetic clusters with rotational or oscillational motions were measured. A critical diameter range of magnetic cluster was defined and the range is between 10.21 μm and 6.17 μm that could be used to distinguish rotation and oscillation of clusters.


Sign in / Sign up

Export Citation Format

Share Document