Synthesis of Nano-Hydroxyapatite of Different Morphologies and Their Cellular Compatibility

NANO ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. 2050140
Author(s):  
Jia Chen ◽  
Haishan Deng ◽  
Shun Yao ◽  
Pan Ma ◽  
Minchi Cao ◽  
...  

Nano-hydroxyapatite crystals of different morphologies were synthesized by adding two types of amino acids (glycine and arginine) under hydrothermal conditions. The XRD, FTIR, and TEM characterizations of samples showed that the final product was pure hydroxyapatite with high crystallinity. Organic small-molecule amino acids exhibited a significant inhibitory effect on crystal growth during the synthesis process. This regulatory effect is related to the side chains of amino acids. The results of co-culturing with bone mesenchymal stem cells showed that the cell compatibility of nanoparticles differs based on their morphologies. The results of this study are significant for the fabrication of nano-hydroxyapatite with tunable morphology, which can have applications in the fields of bone repair and drug loading.

2021 ◽  
Vol 271 ◽  
pp. 04041
Author(s):  
Xunqin Fan ◽  
Shuan Liu ◽  
Ke Ruan

Magnetic nanoparticle Fe304 have super paramagnetic, biological cell compatibility, low toxicity, antibiosis and bacteriostasis, drug loading, sustained release and thermal effect. Using magnetic nanoparticies Fe304 as magnetic source, magnetic masoporous glass two-dimensional bone framework was synthesized under the action of external magnetic field, which provides growth space for bone repair, cell proliferation and metabolism, and contribute to mineralizing. The same time, The application of graphene, especially magnetic nanoparticles Fe304, in bone materials, bone repair and relatedmedicalfields was discussed.


2021 ◽  
Vol 17 (8) ◽  
pp. 1668-1678
Author(s):  
Beizhi Zhang ◽  
Yunhui Chai ◽  
Kai Huang ◽  
Xuejie Wei ◽  
Zhiqing Mei ◽  
...  

As infection induced by the implant will lead to operation failure, the implant material must be endowed with certain antibacterial properties. Hydroxyapatite (HA) mesoporous microspheres have been widely used in bone repair due to their advantages, including simple synthesis, good osteogenic properties and drug loading capacity. In this study, vancomycin hydrochloride-loaded mesoporous hydroxyapatite microspheres with micro/nanosurface structures were synthesized to increase osteogenic differentiation and antibacterial ability. Phytic acid (IP6) was used as a template to prepare mesoporous hydroxyapatite microspheres composed of fibres, flakes and smooth surfaces by the hydrothermal homogeneous precipitation method, and the corresponding specific surface areas were 65.20 m2/g, 75.13 m2/g and 71.27 m2/g, respectively. Vancomycin hydrochloride (Van) was used as the drug model to study the drug loading and release characteristics of the microspheres, as well as the in vitro antibacterial properties after treatment. In addition, during cocultivation with MC3T3-E1 preosteoblasts, HA microspheres assembled via flakes exhibited better cell compatibility, which promoted cell proliferation, alkaline phosphatase (ALP) activity, and the formation of calcium nodules and increased the expression of osteogenic differentiation-related proteins such as Runx-2, osteopontin (OPN) and collagen I (COL I). These results indicated that the HA microspheres prepared in this experiment have broad application prospects in drug delivery systems and bone repair.


2021 ◽  
Vol 13 (8) ◽  
pp. 1445-1451
Author(s):  
Xiao Li ◽  
Caiping Yan ◽  
Dengyuan Wang ◽  
Hong Lu ◽  
Zhidao Xia

This study aimed to fabricate micro-nano bioactive glass (MNBG) scaffolds loaded with chemotherapeutics and siglec-15 monoclonal antibody with bone repair capability and high-active drug loading capability for postoperative treatment of osteosarcoma. Bioactive glass (BG) particles were incorporated with siglec-15 mAb and gemcitabine through mesopores and calcium ions on the surface. Dendritic cells (DCs) were treated with siglec-loaded BGs and gemcitabine. RT-qPCR analysis was conducted to detect DJ-1 and PTEN mRNA levels, CCK-8 technology to detect cell activity, and flow cytometry to detect cell apoptosis. Rats were administrated with siglec-15-MNBG composite scaffolds with/without gemcitabine. 3D printing was used to determine adhesion strength of each group. Administration of MNBG scaffold decreased the expression of PTEN and up-regulated expression of DJ-1 when inducing cell apoptosis. Combined treatment with gemcitabine augmented adhesion of material and enhanced phosphorylation activity of p-AKT, mitigating the inhibitory effect of scaffold loaded with siglec-15 on p-AKT protein expression. Collectively, MNBG scaffold loaded with siglec-15 might promote bone regeneration and incorporate with chemotherapeutic drugs to suppress tumor development and promote apoptosis through PTEN/PI3 K pathway. These findings provide a novel insight into postoperative treatment of osteosarcoma and help development of tumor immunotherapy/bone repair integrated materials.


Author(s):  
V. B. Dolgo-Saburov ◽  
N. I. Chalisova ◽  
L. V. Lyanginen ◽  
E. S. Zalomaeva

In an organotypic culture, an investigation was conducted into combined effects of cyclophosphamide DNA as synthesis inhibitor used to model a resorptive action of mustard gas, and cortexin polypeptide or each of 20 encoded amino acids on the development of cell proliferation in cerebral cortex explants of the rat. The combined administration of cyclophosphamide together with cortexin or with each of the 20 encoded amino acids, except glycine, showed suppression of the cytostatic agent inhibitory effect. Thus, cortexin and amino acids have a protective effect on cell proliferation in the tissue culture of the central nervous system under the action of mustardlike substances.


Author(s):  
N. I. Chalisova ◽  
V. K. Kozlov ◽  
A. B. Mulik ◽  
E. P. Zatsepin ◽  
T. A. Kostrova

An urgent problem is the search for substances that can provide a protective effect in cases of DNA synthesis and repair disorders that arise as a result of side effects of cytostatic drugs used in the treatment of cancer. The aim of this work was to study the effect of 20 encoded amino acids in the presence of Cyclophosphane on the development of organotypic culture of rat liver tissue. The results obtained indicate that Cyclophosphane; which simulates the action of such cytostatic substances; inhibits cell proliferation in the liver tissue. It was also found that the encoded amino acids: asparagine; arginine; and glutamic acid; eliminate the inhibitory effect of Cyclophosphane in liver tissue culture. The growth zone of explants after combined exposure to Cyclophosphane (whose isolated action suppressed the growth zone) and these amino acids increased significantly and reached control values. Thus; the experimental data create the basis for the development of methods for the therapeutic use of the three studied amino acids for the removal of side effects in the treatment with cytostatic drugs.


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Víctor Santos-Rosales ◽  
Inés Ardao ◽  
Leticia Goimil ◽  
Jose Luis Gomez-Amoza ◽  
Carlos A. García-González

Demand of scaffolds for hard tissue repair increases due to a higher incidence of fractures related to accidents and bone-diseases that are linked to the ageing of the population. Namely, scaffolds loaded with bioactive agents can facilitate the bone repair by favoring the bone integration and avoiding post-grafting complications. Supercritical (sc-)foaming technology emerges as a unique solvent-free approach for the processing of drug-loadenu7d scaffolds at high incorporation yields. In this work, medicated poly(ε-caprolactone) (PCL) scaffolds were prepared by sc-foaming coupled with a leaching process to overcome problems of pore size tuning of the sc-foaming technique. The removal of the solid porogen (BA, ammonium bicarbonate) was carried out by a thermal leaching taking place at 37 °C and in the absence of solvents for the first time. Macroporous scaffolds with dual porosity (50–100 µm and 200–400 µm ranges) were obtained and with a porous structure directly dependent on the porogen content used. The processing of ketoprofen-loaded scaffolds using BA porogen resulted in drug loading yields close to 100% and influenced its release profile from the PCL matrix to a relevant clinical scenario. A novel solvent-free strategy has been set to integrate the incorporation of solid porogens in the sc-foaming of medicated scaffolds.


2015 ◽  
Vol 48 (3) ◽  
pp. 827-835 ◽  
Author(s):  
Mingliang Tang ◽  
Xuerun Li ◽  
Yusheng Shen ◽  
Xiaodong Shen

Modeling of the kinetics of the synthesis process for calcium sulfate α-hemihydrate from gypsum formed by flue gas desulfurization (FGD) is important to produce high-performance products with minimal costs and production cycles under hydrothermal conditions. In this study, a model was established by horizontally translating the obtained crystal size distribution (CSD) to the CSD of the stable phase during the transformation process. A simple method was used to obtain the nucleation and growth rates. A nonlinear optimization algorithm method was employed to determine the kinetic parameters. The model can be successfully used to analyze the transformation kinetics of FGD gypsum to α-hemihydrate in an isothermal batch crystallizer. The results showed that the transformation temperature and stirring speed exhibit a significant influence on the crystal growth and nucleation rates of α-hemihydrate, thus altering the transformation time and CSD of the final products. The characteristics obtained by the proposed model can potentially be used in the production of α-hemihydrate.


1975 ◽  
Vol 53 (9) ◽  
pp. 975-988 ◽  
Author(s):  
Danny P. Singh ◽  
Hérb. B. LéJohn

Transport of amino acids in the water-mould Achlya is an energy-dependent process. Based on competition kinetics and studies involving the influence of pH and temperature on the initial transport rates, it was concluded that the 20 amino acids (L-isomers) commonly found in proteins were transported by more than one, possibly nine, uptake systems. This is similar to the pattern elucidated for some bacteria but unlike those uncovered for all fungi studied to date. The nine different transport systems elucidated are: (i) methionine, (ii) cysteine, (iii) proline, (iv) serine–threonine, (v) aspartic and glutamic acids, (vi) glutamine and asparagine, (vii) glycine and alanine, (viii) histidine, lysine, and arginine, and (ix) phenylalanine–tyrosine–tryptophan and leucine–isoleucine–valine as two overlapping groups. Transport of all of these amino acids was inhibited by azide, cyanide, and its derivatives and 2,4-dinitrophenol. These agents normally interfere with metabolism at the level of the electron transport chain and oxidative phosphorylation. Osmotic shock treatment of the cells released, into the shock fluid, a glycopeptide that binds calcium as well as tryptophan but no other amino acid. The shocked cells are incapable of concentrating amino acids, but remain viable and reacquire this capacity when the glycopeptide is resynthesized.Calcium played more than a secondary role in the transport of the amino acids. When bound to the membrane-localized glycopeptide, it permits concentrative transport to take place. However, excess calcium can inhibit transport which can be overcome by chelating with citrate. Calculations show that the concentration of free citrate is most important. At low citrate concentrations (less than 1 mM) in the absence of exogenously supplied calcium, enhancement of amino acid transport occurs. At high concentrations (greater than 5 mM), citrate inhibits but this effect can be reversed by titrating with calcium. Evidently, the glycopeptide acts as a calcium sink to regulate the concentration of calcium made available to the cell for its membrane activities.N6-(Δ2-isopentenyl) adenine (a plant growth 'hormone') and analogues mimic the inhibitory effect of citrate and bind to the glycopeptide as well. Replot data for citrate and N6-(Δ2-isopentyl) adenine inhibition indicate that both agents have no more than one binding constant. These results implicate calcium, glycopeptide, and energy-dependent transport of solutes in some, as yet undefinable, way.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yiqiang Hu ◽  
Ranyang Tao ◽  
Linfang Wang ◽  
Lang Chen ◽  
Ze Lin ◽  
...  

Oxidative stress is relevant in compression-induced nucleus pulposus (NP) cell apoptosis and intervertebral disc (IVD) degeneration. Exosomes derived from bone mesenchymal stem cells (BMSCs-Exos) are key secretory products of MSCs, with important roles in tissue regeneration. This research is aimed at studying the protective impact of BMSCs-Exos on NP cell apoptosis caused by compression and investigating the underlying mechanisms. Our results indicated that we isolated BMSCs successfully. Exosomes were isolated from the BMSCs and found to alleviate the inhibitory effect that compression has on proliferation and viability in NP cells, decreasing the toxic effects of compression-induced NP cells. AnnexinV/PI double staining and TUNEL assays indicated that the BMSCs-Exos reduced compression-induced apoptosis. In addition, our research found that BMSCs-Exos suppressed compression-mediated NP oxidative stress by detecting the ROS and malondialdehyde level. Furthermore, BMSCs-Exos increased the mitochondrial membrane potential and alleviated compression-induced mitochondrial damage. These results indicate that BMSCs-Exos alleviate compression-mediated NP apoptosis by suppressing oxidative stress, which may provide a promising cell-free therapy for treating IVD degeneration.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hiba Abdelnabi ◽  
Walhan Alshaer ◽  
Hanan Azzam ◽  
Dana Alqudah ◽  
Ali Al-Samydai ◽  
...  

Abstract Capsaicin (CAP) is an active component in Capsicum annuum L. known to have anti inflammatory and anticancer activity. CAP is highly lipophilic and suffers low bioavailability. Therefore, developing delivery systems that enhance solubility and bioavailability can provide more promising therapeutic applications for CAP. In the current work, CAP was complexed with β-cyclodextrin (βCD) to form capsaicin-in-β-cyclodextrin (CAP-in-βCD) inclusion complexes. Then, the CAP-in-βCD inclusion complexes were characterized and loaded into PEGylated liposomes using the thin-film hydration extrusion method. The size, charge, and polydispersity index (PDI) of the PEGylated liposomes were characterized. The levels of IL-8 production were quantified after treatment using array beads. The results of this work showed that the successful formation of inclusion complexes at 1:5 M ratio of CAP to βCD respectively. PEGylated liposomes loaded with βCD/CAP inclusion complexes (CAP-in-βCD-in-liposomes) have a hydrodynamic diameter of (181 ± 36) nm, zeta potential of (−2.63 ± 4.00) mV, encapsulation efficiency (EE) of (38.65 ± 3.70)%, drug loading (DL) of (1.65 ± 0.16)%, and a stable release profile. Both free CAP and liposomal CAP showed a significant reduction in the IL-8 production by the MDA-MB-231 and A549 cancer cell lines after treatment. In conclusion, a liposomal-based drug delivery system for CAP was achieved.


Sign in / Sign up

Export Citation Format

Share Document