Conception and numerical simulation of heat and mass transfer in a solid state hydrogen storage reactor

2019 ◽  
Vol 87 (2) ◽  
pp. 20902 ◽  
Author(s):  
Amine Alaoui-Belghiti ◽  
Mourad Rkhis ◽  
Said Laasri ◽  
Abdelowahed Hajjaji ◽  
Mohamed Eljouad ◽  
...  

Nowadays energy storage seems to be a vital point in any new energy paradigm. It has become an important and strategic issue, to ensure the energetic sufficiency of humanity. Indeed, hydrogen storage in solids has been proved and revealed as clean and efficient energy storage. Moreover, it can be thought as a seriously considered solution to enable renewable energy to be a part of our quotidian life. To achieve storing hydrogen in solid form, the present study aimed to concepts and simulates a solid-state hydrogen storage reactor (tank). An investigation of the parameters influencing the hydrogen storage performance is carried out. Meanwhile, to understand the physical phenomenon taking place during the storage of hydrogen, a 2D numerical modelling for a metal hydrides-based in hydrogen reactor is presented. A strong coupling between energy balance, kinetic law, as well as a mass momentum balance at sorbent bed temperature under a non-uniform pressure was resolved based on finite element method. The temporal evolutions of pressure, the raising temperature in the bed during the hydriding process as well as the impact of the hydrogen supply pressure within the tank are analysed and validated by comparison with the experimental work in literature, a good agreement is obtained. From an industrial point of view, this study can be used to design and manufacture an optimal solid-state hydrogen storage reactor.

2018 ◽  
Vol 9 ◽  
pp. 1623-1628 ◽  
Author(s):  
Jonathan Op de Beeck ◽  
Nouha Labyedh ◽  
Alfonso Sepúlveda ◽  
Valentina Spampinato ◽  
Alexis Franquet ◽  
...  

The continuous demand for improved performance in energy storage is driving the evolution of Li-ion battery technology toward emerging battery architectures such as 3D all-solid-state microbatteries (ASB). Being based on solid-state ionic processes in thin films, these new energy storage devices require adequate materials analysis techniques to study ionic and electronic phenomena. This is key to facilitate their commercial introduction. For example, in the case of cathode materials, structural, electrical and chemical information must be probed at the nanoscale and in the same area, to identify the ionic processes occurring inside each individual layer and understand the impact on the entire battery cell. In this work, we pursue this objective by using two well established nanoscale analysis techniques namely conductive atomic force microscopy (C-AFM) and secondary ion mass spectrometry (SIMS). We present a platform to study Li-ion composites with nanometer resolution that allows one to sense a multitude of key characteristics including structural, electrical and chemical information. First, we demonstrate the capability of a biased AFM tip to perform field-induced ionic migration in thin (cathode) films and its diagnosis through the observation of the local resistance change. The latter is ascribed to the internal rearrangement of Li-ions under the effect of a strong and localized electric field. Second, the combination of C-AFM and SIMS is used to correlate electrical conductivity and local chemistry in different cathodes for application in ASB. Finally, a promising starting point towards quantitative electrochemical information starting from C-AFM is indicated.


Author(s):  
Erika Michela Dematteis ◽  
Jussara Barale ◽  
Marta Corno ◽  
Alessandro Sciullo ◽  
Marcello Baricco ◽  
...  

This paper aims at addressing the exploitation of solid-state carriers for hydrogen storage, with attention paid both to the technical aspects, through a wide review of the available integrated systems, and to the social aspects, through a preliminary overview of the connected impacts from a gender perspective. As for the technical perspective, carriers to be used for solid-state hydrogen storage for various applications can be classified into two classes: metal and complex hydrides. Related crystal structures and corresponding hydrogen sorption properties are reviewed and discussed. Fundamentals of thermodynamics of hydrogen sorption evidences the key role of the enthalpy of reaction, which determines the operating conditions (i.e. temperatures and pressures). In addition, it rules the heat to be removed from the tank during hydrogen absorption and to be delivered to the tank during hydrogen desorption. Suitable values for the enthalpy of hydrogen sorption reaction for operating conditions close to ambient (i.e. room temperature and 1-10 bar of hydrogen) are close to 30 kJ·molH2 1. The kinetics of hydrogen sorption reaction is strongly related to the microstructure and to the morphology (i.e. loose powder or pellets) of the carriers. Usually, kinetics of hydrogen sorption reaction is rather fast, and the thermal management of the tank is the rate determining step of the processes. As for the social perspective, various scenarios for the applications in different socio-economic contexts of solid-state hydrogen storage technologies are described. As it occurs with the exploitation of other renewables innovative technologies, a wide consideration of the social factors connected to these processes is needed to assess the extent to which a specific innovation might produce positive or negative impacts in the recipient socio-economic system and to explore the potential role of the social components and dynamics in fostering the diffusion of the innovation itself. Attention has been addressed to the gender perspective, in view of the enhancement of hydrogen-related energy storage systems, intended both in terms of the role of women in triggering the exploitation of hydrogen-based storage as well as to the impact of this innovation in their current conditions, at work and in daily life.


2021 ◽  
Author(s):  
Aliakbar Hassanpouryouzband ◽  
Katriona Edlmann ◽  
Mark Wilkinson

<p>To enable a fast transition of the global energy sector towards operation with 100% renewable and clean energy technology, the geological storage of hydrogen in depleted gas fields or salt caverns has been considered as a strong candidate for the future energy storage required for limiting global warming to well below 2 °C, as agreed under the Paris Agreement. As such, understanding the impact of injected hydrogen on the geochemical equilibrium in these storage reservoirs is critical. Here, using our bespoke high pressure/temperature batch reaction vessels we investigate the potential effects of hydrogen injection into 3 different sandstones reservoirs.  These experiments were conducted at reservoir temperature and at different injection pressures from 1 to 20 MPa with salinities from 0 to 10 weight% over different time periods from 1 to 8 weeks.  Our experiments reveal that there is no hydrogen-associated geochemical reaction for the selected sandstones. Although changing reservoir pressure slightly affected the mineral dissolution equilibria at ppm level for hydrogen injection scenarios, the fluctuations of mineral dissolution in water associated with pressure change have a negligible influence on the efficiency of geological hydrogen storage.  Therefore, based on the analysis of water chemistry before and after the mentioned experiments, we demonstrate that from geochemical point of view geological storage of hydrogen in these sandstone reservoirs is safe and we don’t expect any hydrogen loss due to geochemical reactions. </p>


2020 ◽  
Author(s):  
Héricles Eduardo Oliveira Farias ◽  
Camilo Alberto Sepulveda Rangel ◽  
Luciane Neves Canha ◽  
Henrique Horquen Martins ◽  
Tiago Augusto Silva Santana ◽  
...  

The number of connections with distributed generation has been growing steadily in Brazil, however, there is still a problem associated with it, the intermittence. Although a consumer with photovoltaic solar system (PVSS) is able to generate energy even when the grid is unavailable, the load is still susceptible to power outages given the intermittence of the source, one possible solution for this is the use of energy storage elements to supply part of the load, or even all of it when needed. In this study is analyzed, under the economic viability point of view, the impact of using a Battery Energy Storage System (BESS) coupled with a PVSS to supply a residential consumer in the event of power outages.


Energy ◽  
2020 ◽  
Vol 190 ◽  
pp. 116224 ◽  
Author(s):  
Hossein Chabok ◽  
Mahmoud Roustaei ◽  
Morteza Sheikh ◽  
Abdollah Kavousi-Fard

2018 ◽  
Vol 2 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Madhavi Konni ◽  
Anima S. Dadhich ◽  
Saratchandra Babu Mukkamala

Surface functionalization via decorating nanometal particles on MWCNTs for hydrogen uptake through a spillover mechanism is the key for hydrogen energy storage for transport sectors.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2825 ◽  
Author(s):  
Subodh Kharel ◽  
Bahman Shabani

This paper presents a case study of using hydrogen for large-scale long-term storage application to support the current electricity generation mix of South Australia state in Australia, which primarily includes gas, wind and solar. For this purpose two cases of battery energy storage and hybrid battery-hydrogen storage systems to support solar and wind energy inputs were compared from a techno-economical point of view. Hybrid battery-hydrogen storage system was found to be more cost competitive with unit cost of electricity at $0.626/kWh (US dollar) compared to battery-only energy storage systems with a $2.68/kWh unit cost of electricity. This research also found that the excess stored hydrogen can be further utilised to generate extra electricity. Further utilisation of generated electricity can be incorporated to meet the load demand by either decreasing the base load supply from gas in the present scenario or exporting it to neighbouring states to enhance economic viability of the system. The use of excess stored hydrogen to generate extra electricity further reduced the cost to $0.494/kWh.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1797-C1797
Author(s):  
Julien Lang ◽  
Jacques Huot

Hydrogen could have a leading role as an energy carrier in the future. As a storage medium, metal hydrides are interesting from a fundamental as well as practical point of view. Hydrogen storage applications have been the main driving force of research on these materials but lately uses such as thermal storage are considered. Magnesium and magnesium alloys are interesting as a hydrogen storage material since they are low cost and have a high gravimetric capacity (7.6 wt. %). As a preparation technique, cold rolling has been recently shown to be an equivalent to high energy ball milling for magnesium hydride [1]. In this presentation we will review the use of x-ray and neutron diffraction to study the effect of cold rolling on magnesium and magnesium hydride's crystal structure. Cold rolling on magnesium plate produced a highly textured material. When performed on magnesium hydride, cold rolling reduced the crystallite size down to nanometer scale. The impact of texture and naocrystallinity on hydrogen storage behaviours will also be discussed.


2021 ◽  
Vol 5 (6) ◽  
pp. 145
Author(s):  
Song-Jeng Huang ◽  
Matoke Peter Mose ◽  
Sathiyalingam Kannaiyan

The use of Mg-based compounds in solid-state hydrogen energy storage has a very high prospect due to its high potential, low-cost, and ease of availability. Today, solid-state hydrogen storage science is concerned with understanding the material behavior of different compositions and structure when interacting with hydrogen. Finding a suitable material has remained an elusive idea, and therefore, this review summarizes works by various groups, the milestones they have achieved, and the roadmap to be taken on the study of hydrogen storage using low-cost magnesium composites. Mg-based compounds are further examined from the perspective of artificial intelligence studies, which helps to improve prediction of their properties and hydrogen storage performance. There exist several techniques to improve the performance of Mg-based compounds: microstructure modification, use of catalytic additives, and composition regulation. Microstructure modification is usually achieved by employing different synthetic techniques like severe plastic deformation, high energy ball milling, and cold rolling, among others. These synthetic approaches are discussed herein. In this review, a discussion of key parameters and operating conditions are highlighted in a view to finding high storage capacity and faster kinetics. Furthermore, recent approaches like machine learning have found application in guiding the experimental design. Hence, this review paper also explores how machine learning techniques have been utilized to fasten the materials research. It is however noted that this study is not exhaustive in itself.


Sign in / Sign up

Export Citation Format

Share Document