scholarly journals Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculationsș results

2017 ◽  
Vol 153 ◽  
pp. 07025
Author(s):  
A. Esposito ◽  
O. Frasciello ◽  
M. Pelliccioni
1997 ◽  
Vol 3 (S2) ◽  
pp. 885-886 ◽  
Author(s):  
Pierre Hovington ◽  
Dominique Drouin ◽  
Raynald Gauvin ◽  
David C. Joy

The range of electrons for a given beam energy and atomic number is one of the most valuable piece of information a microscopist must know before carrying out qualitative and quantitative analysis of heterogeneous samples in a scanning electron microscope (SEM). The frequently used parametrization of Kanaya & Okayama is only « valid » at high energy (EO > 10 keV). However, with the advent of Field Emission Gun SEM (FEGSEM) most of the effort has been toward low energy analysis where no parametrization is available yet. In this paper, the parametrization of the range of electrons at low energy as a function of atomic number and beam energy will be presented for both the backscattered and the internal electrons.The distribution of the maximum depth reached by 250 k electrons generated by the CASINO Monte Carlo program2 was used to compute the range for 10 elements at 20 energies.


2006 ◽  
Vol 79 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Miltiadis F. Tsiakalos ◽  
Sotirios Stathakis ◽  
George A. Plataniotis ◽  
Constantin Kappas ◽  
Kiki Theodorou

2021 ◽  
Author(s):  
Fabiana Da Pieve ◽  
Bin Gu ◽  
Natalia Koval ◽  
Daniel Muñoz Santiburcio ◽  
Jos Teunissen ◽  
...  

<p>Cosmic Rays, in particular the high charge and high energy (HZE) particles and eventual secondary low energy protons, are high Linear Energy Transfer (LET) radiation, i.e. they transfer a high amount of energy to the target per unit path length travelled in the target itself, leaving behind a dense track of ionization and atomic excitations. Understanding the radiation physics and the biology induced by the impact of high LET radiation is of importance for different fields of research, such as radiation therapy with charged particles, space radiation protection of astronauts and of human explorers on Mars and eventually also survival of any bacterial, plant cell on other planetary/small bodies. While data for low LET radiation  such as X-ray have been studied in the survivors of the atomic-bombs, medical patients and nuclear reactor workers, for high LET radiation there is no relevant collection of human data for risk estimates, and experiments with nuclei created at accelerators are necessary.</p><p>At present we still do not have an understanding of how the  radiation  interaction  with a  single nanometric  target (units of DNA), the so-called track  structure [1],  should  decide  the  fate  of  the  irradiated cell. Monte Carlo (MC) track structure codes essentially work only with the physics given by impact cross sections on the sole water, there is no real consideration of the electronic/chemical characteristics of the hosted biomolecule [2]. Limitations given by such an approach have been highlighted [3], but on the positive side a massive effort is being done to follow the different steps of radiation effects up to biological damage [4].</p><p>In this contribution we would like to highlight how a chain of models from different communities could be of help to study the radiation effects on biomolecules. In particular, we will present how ab-initio (parameter-free) approaches from the chemical-physics community can be used to derive in detail the energy loss of the impacting ions/secondary electrons on water and small biological units [5,6], either following in real time the ion or based on perturbative theories for low energy electrons, and how the derived quantity can be given  as input to Monte Carlo track structure codes, extending their capabilities to different relevant targets. Given the physical limitations and high costs of irradiation experiments, such calculations offer an efficient approach that can boost the understanding of radiation physics and consolidate existing MC track structure codes.</p><p>This work is initiated in the context of the EU H2020 project ESC2RAD, Grant 776410.</p><p>[1] H. Nikjoo, S. Uehara, W.E. Wilson, et al, International Journal of Radiation Biology 73, 355 (1998)</p><p>[2] H. Palmans, H Rabus, A L Belchior, et al, Br. J. Radiol. 88, 20140392 (2015)</p><p>[3] H. Rabus and H. Nettelback, Radiation Measurements 46, 1522 (2011)</p><p>[4] M. Karamitros, S. Luan, M.A. Bernal, et al,  Journal of Computational Physics 274,  841 (2014)</p><p>[5] B. Gu, B. Cunningham D. Munoz-Santiburcio, F. Da Pieve, E. Artacho and J. Kohanoff, J. Chem. Phys. 153, 034113 (2020)</p><p>[6] N. Koval, J. Kohanoff, E. Artacho et al, in preparation</p>


2020 ◽  
Vol 22 (2-3) ◽  
pp. 183-189
Author(s):  
Douglas D. DiJulio ◽  
Isak Svensson ◽  
Xiao Xiao Cai ◽  
Joakim Cederkall ◽  
Phillip M. Bentley

The transport of neutrons in long beamlines at spallation neutron sources presents a unique challenge for Monte-Carlo transport calculations. This is due to the need to accurately model the deep-penetration of high-energy neutrons through meters of thick dense shields close to the source and at the same time to model the transport of low- energy neutrons across distances up to around 150 m in length. Typically, such types of calculations may be carried out with MCNP-based codes or alternatively PHITS. However, in recent years there has been an increased interest in the suitability of Geant4 for such types of calculations. Therefore, we have implemented supermirror physics, a neutron chopper module and the duct-source variance reduction technique for low- energy neutron transport from the PHITS Monte-Carlo code into Geant4. In the current work, we present a series of benchmarks of these extensions with the PHITS software, which demonstrates the suitability of Geant4 for simulating long neutron beamlines at a spallation neutron source, such as the European Spallation Source, currently under construction in Lund, Sweden.


2003 ◽  
Vol 792 ◽  
Author(s):  
Lionel Thomé ◽  
Aurélie Gentils ◽  
Frédérico Garrido ◽  
Jacek Jagielski

ABSTRACTThe evaluation of the damage generated in crystalline ceramic oxides placed in a radiative environment is a major challenge in many technological domains. The use of the channeling technique is particularly well adapted to measure the depth distribution of the irradiation-induced disorder and to monitor the damage build-up. This paper describes the methodology used for the study of radiation damage with the channeling technique, presents a new method of analysis of channeling data based on Monte-Carlo simulations and provides recent results concerning the damage induced in ion-bombarded ceramic oxide single crystals in both nuclear (low-energy ion irradiation) and electronic (high-energy ion irradiation) slowing-down regimes.


2013 ◽  
Vol 275-277 ◽  
pp. 1994-1997
Author(s):  
Wen Jie Liu ◽  
Jun Liu ◽  
Zhi Qiang Xiao

In the field of the flash radiography scattering is one of the most important affecting factors in determining the object information. A state-of-the-art optical component called anti-scatter grid has been used in high energy X-ray radiography. But the application for such kind of module in sub-megavolt (100 keV ~ 1MeV) flash radiography has not been mentioned yet. Recently our group has designed a new grid which was different with the products either in high energy X-ray radiography or in low energy mammography. The grid was manufactured and then tested in a 450 keV flash radiography source. The experimental results indicated that the grid’s anti-scatter capability was superexcellent. The Monte Carlo simulation also confirmed the experimental conclusion and the scattered to primary ratios with and without the grid were evaluated quantificationally.


2011 ◽  
Vol 21 (3) ◽  
pp. 183-197 ◽  
Author(s):  
Ndimofor Chofor ◽  
Dietrich Harder ◽  
Kay Willborn ◽  
Antje Rühmann ◽  
Björn Poppe

2021 ◽  
Vol 21 (2) ◽  
pp. 49-60
Author(s):  
C. V. Hrytsiuk ◽  
◽  
А. M. Bozhuk ◽  
А. V. Nosovskyi ◽  
V. І. Gulik ◽  
...  

Muon tomography is a promising detection technology that uses natural radiation, the muons of cosmic rays. In the last decade, a significant number of scientific papers have appeared that investigate the possibility of using muon tomography in various fields of science and technology. Especially remarkable is the considerable potential of this technology for detecting the illegal transport of radioactive materials and for no-invasive testing of the integrity of spent nuclear fuel in dry storage facilities for such fuel. For the implementation of muon tomography technology, the process of preliminary modeling of the experimental detector facility is important, which also requires verification of the obtained calculation results. For this purpose, the well-known Monte Carlo codes MCNP and Geant4 are mainly used. This results of the first cross-verification studies of MCNP6 and Geant4 codes are demonstrated in the paper. The study was performed on simple models for different materials and for different energies of the muons bombarding the research object. The recommended QGSP_BERT physics library was used in the Geant4 code. In the MCNP6 code, the recommended settings for cosmic particle simulations were used. The calculations showed that for low-energy muons, both codes give results that agree well with each other. This can be explained by the fact that similar libraries of evaluated nuclear data are used in the low-energy range. Regarding the muons of intermediate energies, there is a significant difference between the two codes, which may indicate differences in physical models. The modeling of high-energy muon transfer has better agreement between MCNP6 and Geant4 codes than for intermediate-energy muons, but significant differences are still observed for heavy nuclei.


Author(s):  
John C. Russ

Monte-Carlo programs are well recognized for their ability to model electron beam interactions with samples, and to incorporate boundary conditions such as compositional or surface variations which are difficult to handle analytically. This success has been especially powerful for modelling X-ray emission and the backscattering of high energy electrons. Secondary electron emission has proven to be somewhat more difficult, since the diffusion of the generated secondaries to the surface is strongly geometry dependent, and requires analytical calculations as well as material parameters. Modelling of secondary electron yield within a Monte-Carlo framework has been done using multiple scattering programs, but is not readily adapted to the moderately complex geometries associated with samples such as microelectronic devices, etc.This paper reports results using a different approach in which simplifying assumptions are made to permit direct and easy estimation of the secondary electron signal from samples of arbitrary complexity. The single-scattering program which performs the basic Monte-Carlo simulation (and is also used for backscattered electron and EBIC simulation) allows multiple regions to be defined within the sample, each with boundaries formed by a polygon of any number of sides. Each region may be given any elemental composition in atomic percent. In addition to the regions comprising the primary structure of the sample, a series of thin regions are defined along the surface(s) in which the total energy loss of the primary electrons is summed. This energy loss is assumed to be proportional to the generated secondary electron signal which would be emitted from the sample. The only adjustable variable is the thickness of the region, which plays the same role as the mean free path of the secondary electrons in an analytical calculation. This is treated as an empirical factor, similar in many respects to the λ and ε parameters in the Joy model.


2014 ◽  
Vol 6 (1) ◽  
pp. 1006-1015
Author(s):  
Negin Shagholi ◽  
Hassan Ali ◽  
Mahdi Sadeghi ◽  
Arjang Shahvar ◽  
Hoda Darestani ◽  
...  

Medical linear accelerators, besides the clinically high energy electron and photon beams, produce other secondary particles such as neutrons which escalate the delivered dose. In this study the neutron dose at 10 and 18MV Elekta linac was obtained by using TLD600 and TLD700 as well as Monte Carlo simulation. For neutron dose assessment in 2020 cm2 field, TLDs were calibrated at first. Gamma calibration was performed with 10 and 18 MV linac and neutron calibration was done with 241Am-Be neutron source. For simulation, MCNPX code was used then calculated neutron dose equivalent was compared with measurement data. Neutron dose equivalent at 18 MV was measured by using TLDs on the phantom surface and depths of 1, 2, 3.3, 4, 5 and 6 cm. Neutron dose at depths of less than 3.3cm was zero and maximized at the depth of 4 cm (44.39 mSvGy-1), whereas calculation resulted  in the maximum of 2.32 mSvGy-1 at the same depth. Neutron dose at 10 MV was measured by using TLDs on the phantom surface and depths of 1, 2, 2.5, 3.3, 4 and 5 cm. No photoneutron dose was observed at depths of less than 3.3cm and the maximum was at 4cm equal to 5.44mSvGy-1, however, the calculated data showed the maximum of 0.077mSvGy-1 at the same depth. The comparison between measured photo neutron dose and calculated data along the beam axis in different depths, shows that the measurement data were much more than the calculated data, so it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry in linac central axis due to high photon flux, whereas MCNPX Monte Carlo techniques still remain a valuable tool for photonuclear dose studies.


Sign in / Sign up

Export Citation Format

Share Document