scholarly journals SU(2) with fundamental fermions and scalars

2018 ◽  
Vol 175 ◽  
pp. 08010 ◽  
Author(s):  
Martin Hansen ◽  
Tadeusz Janowski ◽  
Claudio Pica ◽  
Arianna Toniato

We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of “fundamental” partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90

2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Yasuhiro Sekino

Abstract Gauge/gravity correspondence is regarded as a powerful tool for the study of strongly coupled quantum systems, but its proof is not available. An unresolved issue that should be closely related to the proof is what kind of correspondence exists, if any, when gauge theory is weakly coupled. We report progress about this limit for the case associated with D$p$-branes ($0\le p\le 4$), namely, the duality between the $(p+1)$D maximally supersymmetric Yang–Mills theory and superstring theory on the near-horizon limit of the D$p$-brane solution. It has been suggested by supergravity analysis that the two-point functions of certain operators in gauge theory obey a power law with the power different from the free-field value for $p\neq 3$. In this work, we show for the first time that the free-field result can be reproduced by superstring theory on the strongly curved background. The operator that we consider is of the form ${\rm Tr}(Z^J)$, where $Z$ is a complex combination of two scalar fields. We assume that the corresponding string has the worldsheet spatial direction discretized into $J$ bits, and use the fact that these bits become non-interacting when ’t Hooft coupling is zero.


2022 ◽  
Vol 258 ◽  
pp. 08002
Author(s):  
Gabriele Ferretti

I review attempts to construct models of partial compositeness from strongly coupled gauge theories. A few minimal assumptions allow one to isolate a small number of representative models. After presenting the main idea, I discuss a recent proposal to detect a light pseudo-scalar, predicted in all these models, at the LHCb detector.


1997 ◽  
Vol 12 (25) ◽  
pp. 4597-4610
Author(s):  
M. Chemtob ◽  
K. Langfeld

We construct a transformation for scalar QED (U(1) gauge theory coupled with a charged scalar field) which leads to a dual effective gauge theory having a perturbation theory expansion in inverse powers of the (electric charge) coupling constant. The dual formulation is applied to the special case of scalar QED coupled to a massless charged fermion. A four-fermion interaction term arises naturally under the duality mapping. As an extension to discussions initiated by Miransky, Bardeen and Kondo and their collaborators in the late 1980's, we use this formulation to explore the possibility of a dynamical breakdown of chiral symmetry for the strongly coupled U(1) gauge theory interacting with both scalar and fermion degrees of freedom. Assuming that scalar QED is realized in the Higgs phase, we examine the Schwinger–Dyson equation approach to the fermion propagator in next-to-leading order of the strong coupling expansion (quenched approximation, i.e. no fermion loops). We construct a consistent renormalization procedure to deal with the ultraviolet infinities. For fixed scalar field vacuum expectation values, we obtain in the plane of the two important parameters of the theory (electric charge and four-fermion coupling constant) critical transition lines to a chirality broken phase.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Abdullah Khalil ◽  
Radu Tatar

AbstractWe explore the phase diagram for an SU(N) gauge theory in $$2 + 1$$ 2 + 1 dimensions with three families of fermions with different masses, all in the fundamental representation. The phase diagram is three dimensional and contains cuboid, planar and linear quantum regions, depending on the values of the fermionic masses. Among other checks, we consider the consistency with boson/fermion dualities and verify the reduction of the phase diagram to the one and two-family diagrams.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yan Song ◽  
Tong-Tong Hu ◽  
Yong-Qiang Wang

Abstract We study the model of four-dimensional Einstein-Maxwell-Λ theory minimally coupled to a massive charged self-interacting scalar field, parameterized by the quartic and hexic couplings, labelled by λ and β, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moreover, we investigate the full nonlinear solution with nonzero scalar field included, and argue that these counterexamples can be removed by assuming charged self-interacting scalar field with sufficiently large charge not lower than a certain bound. In particular, this bound on charge required to preserve cosmic censorship is no longer precisely the weak gravity bound for the free scalar theory. For the quartic coupling, for λ < 0 the bound is below the one for the free scalar fields, whereas for λ > 0 it is above. Meanwhile, for the hexic coupling the bound is always above the one for the free scalar fields, irrespective of the sign of β.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrey Yu. Kotov ◽  
Daniel Nogradi ◽  
Kalman K. Szabo ◽  
Lorinc Szikszai

Abstract In previous work, [arXiv:1905.01909], we have calculated the mϱ/fπ ratio in the chiral and continuum limit for SU(3) gauge theory coupled to Nf = 2, 3, 4, 5, 6 fermions in the fundamental representation. The main result was that this ratio displays no statistically significant Nf-dependence. In the present work we continue the study of the Nf-dependence by extending the simulations to Nf = 7, 8, 9, 10. Along the way we also study in detail the Nf-dependence of finite volume effects on low energy observables and a particular translational symmetry breaking unphysical, lattice artefact phase specific to staggered fermions.


2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2002 ◽  
Vol 17 (16) ◽  
pp. 2191-2210 ◽  
Author(s):  
C. BIZDADEA ◽  
E. M. CIOROIANU ◽  
S. O. SALIU

Consistent couplings among a set of scalar fields, two types of one-forms and a system of two-forms are investigated in the light of the Hamiltonian BRST cohomology, giving a four-dimensional nonlinear gauge theory. The emerging interactions deform the first-class constraints, the Hamiltonian gauge algebra, as well as the reducibility relations.


1994 ◽  
Vol 09 (19) ◽  
pp. 1785-1790 ◽  
Author(s):  
O. CASTAÑOS ◽  
R. LÓPEZ-PEÑA ◽  
V.I. MAN’KO

The infinite number of time-dependent linear in field and conjugated momenta invariants is derived for the scalar field using the Noether’s theorem procedure.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
N. Dimakis ◽  
T. Pailas ◽  
A. Paliathanasis ◽  
G. Leon ◽  
Petros A. Terzis ◽  
...  

AbstractWe present, for the first time, the quantization process for the Einstein-aether scalar field cosmology. We consider a cosmological theory proposed as a Lorentz violating inflationary model, where the aether and scalar fields interact through the assumption that the aether action constants are ultra-local functions of the scalar field. For this specific theory there is a valid minisuperspace description which we use to quantize. For a particular relation between the two free functions entering the reduced Lagrangian the solution to the Wheeler–DeWitt equation as also the generic classical solution are presented for any given arbitrary potential function.


Sign in / Sign up

Export Citation Format

Share Document