scholarly journals Cosmic matter in the laboratory - the Compressed Baryonic Matter experiment at FAIR

2018 ◽  
Vol 182 ◽  
pp. 02117
Author(s):  
Peter Senger

The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as hadrons including multi-strange (anti-) hyperons, lepton pairs, and charmed particles with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 1 to 10 MHz. This requires very fast and radiation-hard detectors, a novel data read-out and analysis concept based on free streaming front-end electronics, and a high-performance computing cluster for online event selection. The physics program and the status of the proposed CBM experiment will be discussed.

Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Peter Senger

AbstractThe Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at high densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure both bulk observables with large acceptance and rare diagnostic probes such as charmed particles and vector mesons decaying into lepton pairs.


2020 ◽  
Vol 29 (02) ◽  
pp. 2030001 ◽  
Author(s):  
Peter Senger

The Compressed Baryonic Matter (CBM) experiment will investigate high-energy heavy-ion collisions at the international Facility for Antiproton and Ion Research (FAIR), which is under construction in Darmstadt, Germany. The CBM research program is focused on the exploration of QCD matter at neutron star core densities, such as study of the equation-of-state and the search for phase transitions. Key experimental observables include (multi-) strange (anti-) particles, electron-positron pairs and dimuons, particle correlations and fluctuations, and hyper-nuclei. In order to measure these diagnostic probes multi-differentially with unprecedented precision, the CBM detector and data acquisition systems are designed to run at reaction rates up to 10 MHz. This requires the development of fast and radiation hard detectors and readout electronics for track reconstruction, electron and muon identification, time-of-flight (TOF) determination and event characterization. The data are read-out by ultra-fast, radiation-tolerant, and free-streaming front-end electronics, and then transferred via radiation-hard data aggregation units and high-speed optical connections to a high-performance computing center. A fast and highly parallelized software will perform online track reconstruction, particle identification and event analysis. The components of the CBM experimental setup will be discussed and results of physics performance studies will be presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Niseem Magdy

Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model and Polyakov linear sigma-model (PLSM) has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM) a gluonic sector is integrated into LSM. The hadron resonance gas (HRG) model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.


2018 ◽  
Vol 182 ◽  
pp. 02063 ◽  
Author(s):  
Vladimir Kekelidze ◽  
Alexander Kovalenko ◽  
Richard Lednicky ◽  
Victor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of sqrt(sNN) ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au (79+) and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


2019 ◽  
Vol 214 ◽  
pp. 08009 ◽  
Author(s):  
Matthias J. Schnepf ◽  
R. Florian von Cube ◽  
Max Fischer ◽  
Manuel Giffels ◽  
Christoph Heidecker ◽  
...  

Demand for computing resources in high energy physics (HEP) shows a highly dynamic behavior, while the provided resources by the Worldwide LHC Computing Grid (WLCG) remains static. It has become evident that opportunistic resources such as High Performance Computing (HPC) centers and commercial clouds are well suited to cover peak loads. However, the utilization of these resources gives rise to new levels of complexity, e.g. resources need to be managed highly dynamically and HEP applications require a very specific software environment usually not provided at opportunistic resources. Furthermore, aspects to consider are limitations in network bandwidth causing I/O-intensive workflows to run inefficiently. The key component to dynamically run HEP applications on opportunistic resources is the utilization of modern container and virtualization technologies. Based on these technologies, the Karlsruhe Institute of Technology (KIT) has developed ROCED, a resource manager to dynamically integrate and manage a variety of opportunistic resources. In combination with ROCED, HTCondor batch system acts as a powerful single entry point to all available computing resources, leading to a seamless and transparent integration of opportunistic resources into HEP computing. KIT is currently improving the resource management and job scheduling by focusing on I/O requirements of individual workflows, available network bandwidth as well as scalability. For these reasons, we are currently developing a new resource manager, called TARDIS. In this paper, we give an overview of the utilized technologies, the dynamic management, and integration of resources as well as the status of the I/O-based resource and job scheduling.


2005 ◽  
Vol 55 (12) ◽  
pp. 1649-1653 ◽  
Author(s):  
Johann M. Heuser ◽  
Walter F.J. Muller ◽  
Peter Senger ◽  
Christian Muntz ◽  
Joachim Stroth

2018 ◽  
Vol 191 ◽  
pp. 01003 ◽  
Author(s):  
Alexander Kovalenko ◽  
Vladimir Kekelidze ◽  
Richard Lednicky ◽  
Viktor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of √SNN ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au79+ and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


2018 ◽  
Vol 171 ◽  
pp. 12002 ◽  
Author(s):  
Claudia Höhne

The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.


2021 ◽  
Vol 251 ◽  
pp. 03033
Author(s):  
Micah Groh ◽  
Norman Buchanan ◽  
Derek Doyle ◽  
James B. Kowalkowski ◽  
Marc Paterno ◽  
...  

Modern experiments in high energy physics analyze millions of events recorded in particle detectors to select the events of interest and make measurements of physics parameters. These data can often be stored as tabular data in files with detector information and reconstructed quantities. Most current techniques for event selection in these files lack the scalability needed for high performance computing environments. We describe our work to develop a high energy physics analysis framework suitable for high performance computing. This new framework utilizes modern tools for reading files and implicit data parallelism. Framework users analyze tabular data using standard, easy-to-use data analysis techniques in Python while the framework handles the file manipulations and parallelism without the user needing advanced experience in parallel programming. In future versions, we hope to provide a framework that can be utilized on a personal computer or a high performance computing cluster with little change to the user code.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 2419-2424 ◽  
Author(s):  
◽  
CLAUDIA HÖHNE

The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt will be a dedicated heavy-ion experiment exploring the QCD phase diagram in the region of moderate temperatures but very high baryon densities. The currently foreseen CBM detector setup, physics observables of interest, and first feasibility studies of their measurement will be presented.


Sign in / Sign up

Export Citation Format

Share Document