scholarly journals Experimental and Numerical Studies on the Dynamic Behaviors of Concrete Material Based on the Waveform Features in SHPB Test

2018 ◽  
Vol 183 ◽  
pp. 01001
Author(s):  
Xiao Weintu Chen ◽  
Taihong Lv ◽  
Gang Chen

The tendency of the waveform curve can directly reflect the deformation and failure process of specimen in the SHPB (Split Hopkinson Pressure Bar) test of concrete. Different loading rates will result in the different ultimate failure modes, waveform curves. Furthermore, these differences are obviously characterized by some feature points of waveform or stress-strain curves. It is to say for concrete-like damage softening materials, the waveform features contains lots of information of material response. In this study, large dimension (Ф120mm) SHPB tests of concrete specimens have been conducted. Four typical failure patterns of concrete specimens are classified, as well as some typical waveform features, e.g. the “double-peak” and“compression wave” phenomena of reflection wave, etc. On the other hand, the numerical simulations corresponding to the experimental tests are performed by means of the 3D meso-scale model of concrete material. In the numerical results, waveform features observed in experiment are reliably reproduced and predicted. Associating with waveform features, the violation indicator of the specimen stress equilibrium in the SHPB test is first identified for concrete-like damage softening materials. The concrete material behaviors forstress non-equilibrium are further analyzed, e.g. DIF and damage development, etc.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tu-bing Yin ◽  
Kang Peng ◽  
Liang Wang ◽  
Pin Wang ◽  
Xu-yan Yin ◽  
...  

The dynamic failure characteristics of coal rock exposed to high temperatures were studied by using a split Hopkinson pressure bar (SHPB) system. The relationship between energy and time history under different temperature conditions was obtained. The energy evolution and the failure modes of specimens were analyzed. Results are as follows: during the test, more than 60% of the incident energy was not involved in the breaking of the sample, while it was reflected back. With the increase of temperature, the reflected energy increased continuously; transmitted and absorbed energy showed an opposite variation. At the temperature of 25 to 100°C, the absorbed energy was less than that transmitted, while this phenomenon was opposite after 100°C. The values of specific energy absorption (SEA) were distributed at 0.04 to 0.1 J·cm−3, and its evolution with temperature could be divided into four different stages. Under different temperature conditions, the failure modes and the broken blocks of the samples were obviously different, combining with the variation of microstructure characteristics of coal at high temperatures; the physical mechanism of damage and failure patterns of coal rock are explained from the viewpoint of energy.


2021 ◽  
Vol 11 (7) ◽  
pp. 2898
Author(s):  
Humberto C. Godinez ◽  
Esteban Rougier

Simulation of fracture initiation, propagation, and arrest is a problem of interest for many applications in the scientific community. There are a number of numerical methods used for this purpose, and among the most widely accepted is the combined finite-discrete element method (FDEM). To model fracture with FDEM, material behavior is described by specifying a combination of elastic properties, strengths (in the normal and tangential directions), and energy dissipated in failure modes I and II, which are modeled by incorporating a parameterized softening curve defining a post-peak stress-displacement relationship unique to each material. In this work, we implement a data assimilation method to estimate key model parameter values with the objective of improving the calibration processes for FDEM fracture simulations. Specifically, we implement the ensemble Kalman filter assimilation method to the Hybrid Optimization Software Suite (HOSS), a FDEM-based code which was developed for the simulation of fracture and fragmentation behavior. We present a set of assimilation experiments to match the numerical results obtained for a Split Hopkinson Pressure Bar (SHPB) model with experimental observations for granite. We achieved this by calibrating a subset of model parameters. The results show a steady convergence of the assimilated parameter values towards observed time/stress curves from the SHPB observations. In particular, both tensile and shear strengths seem to be converging faster than the other parameters considered.


2018 ◽  
Vol 183 ◽  
pp. 02027
Author(s):  
Reuben Govender ◽  
Muhammad Kariem ◽  
Dong Ruan ◽  
Rafael Santiago ◽  
Dong Wei Shu ◽  
...  

The Split Hopkinson Pressure Bar (SHPB) test, while widely utilised for high strain rate tests, has yet to be standardised. As an exploratory step towards developing a standard test method or protocol, a Round Robin test series has been conducted between four institutions: (i) Swinburne University of Technology, Australia (ii) University of São Paulo, Brazil, (iii) University of Cape Town, South African and (iv) Nanyang Technological University, Singapore. Each institution prepared specimens from a metallic material, and provided batches of specimens from their chosen material to the other institutions. The materials utilised in this round of testing were commercially pure copper and aluminium, magnesium alloy and stainless steel (316 grade). The intent of the first exercise is to establish the consistency of SHPB test results on nominally identical specimens at comparable elevated strain rates, conducted by different laboratories following notionally similar test procedures with some freedom in data processing. This paper presents and compares the results of the first batch of tests for copper, identifying variations between results from different laboratories. The variation between different laboratories’ results for copper is suffciently small that there is confidence in the potential to develop a draft standard in future.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Xiang Li ◽  
Si Huang ◽  
Tubing Yin ◽  
Xibing Li ◽  
Kang Peng ◽  
...  

Thermal shock (TS) is known as the process where fractures are generated when rocks go through sudden temperature changes. In the field of deep rock engineering, the rock mass can be subjected to the TS process in various circumstances. To study the influence of TS on the mechanical behaviors of rock, sandstone specimens are heated at different high temperatures and three cooling methods (stove cooling, air cooling, and freezer cooling) are adopted to provide different cooling rates. The coupled dynamic and static loading tests are performed on the heated sandstone through a modified split Hopkinson pressure bar (SHPB) system. The influence of heating level and cooling rate on the dynamic compressive strength, energy dissipations, and fracturing characteristics is investigated based on the experimental data. The development of the microcracks of the sandstone specimens after the experiment is analyzed utilizing a scanning electron microscope (SEM). The extent of the development of the microcracks serves to explain the variation pattern of the mechanical responses and energy dissipations of the specimens obtained from the loading test. The findings of this study are valuable for practices in rock engineering involving high temperature and fast cooling.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Rongrong Zhang ◽  
Dongdong Ma ◽  
Qingqing Su ◽  
Kun Huang

RMT-150B rock mechanics and split Hopkinson pressure bar (SHPB) devices were adopted to investigate the physical and mechanical properties, energy dissipation, and failure modes of argillaceous sandstone after different high temperatures under air-dried and saturation states. In addition, SEM and EDS tests were conducted to investigate its microstructure characteristics. Results showed that both the P-wave velocity and density of argillaceous sandstone specimen decreased with the increase of high temperature, while its porosity increased. Compared with static stress-strain curves, there was no obvious compaction stage for dynamic stress-strain curves, and the decrease rate of dynamic curves after peak strain was obviously slow compared with static curves. Both the static and dynamic strengths of argillaceous sandstone specimens decreased with increasing temperature, and the critical temperature point for the strength of argillaceous sandstone was 400°C. At the same temperature, the specific energy absorption under air-dried state was generally smaller compared with that under saturated state. Both the strain rate and temperature showed significant effect on the failure mode. After 100∼1000°C heat treatment, the granular crystals of the clastic structure gradually became larger, and both the number and average size of the original pores decreased, resulting in the deterioration of mechanical properties of argillaceous sandstone specimen.


2008 ◽  
Vol 368-372 ◽  
pp. 713-716 ◽  
Author(s):  
Jiang Tao Zhang ◽  
Li Sheng Liu ◽  
Peng Cheng Zhai ◽  
Qing Jie Zhang

The dynamic compressive behavior of Al2O3 (10% vol.) / TiB2 ceramic composite had been tested by using a split Hopkinson pressure bar in this paper. The results show that the main failure modes of the ceramic composite include crushed failure and split fracture along the loading direction. The former is the typical compressive failure of brittle materials. The later is tensile failure along the flaws produced during the composite manufacturing. The numerical simulation was also used to study the effect of the diameter/length ratio of the samples on the experimental results. The effect of the deformation in the bars’ ends, which contacted with the samples, was also studied in the numerical models.


2014 ◽  
Vol 566 ◽  
pp. 122-127
Author(s):  
Takayuki Kusaka ◽  
Takanori Kono ◽  
Yasutoshi Nomura ◽  
Hiroki Wakabayashi

A novel experimental method was proposed for characterizing the compressive properties of composite materials under impact loading. Split Hopkinson pressure bar system was employed to carry out the dynamic compression tests. The dynamic stress-strain relations could be precisely estimated by the proposed method, where the ramped input, generated by the plastic deformation of a zinc buffer, was effective to reduce the oscillation of the stress field in the specimen. The longitudinal strain of gage area could be estimated from the nominal deformation of gage area, and consequently the failure process could be grasped in detail from the stress-strain relation. The dynamic compressive strength of the material was slightly higher than the static compressive strength. In addition, the validity of the proposed method was confirmed by the computational and experimental results.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yutao Li ◽  
Faning Dang ◽  
Mei Zhou ◽  
Jie Ren

In order to study the compressive deformation and energy evolution characteristics of concrete under dynamic loading, impact compression tests with impact velocities of 5, 6, and 7 m/s were carried out on concrete samples with aggregate volume ratios of 0, 32%, 37%, and 42%, respectively, using a split Hopkinson pressure bar test apparatus. The broken concrete pieces after destruction were collected and arranged. The fractal characteristics of fragmentation distribution of concrete specimens with different aggregate rates under impact were discussed, and the roughness of the fragment surface was characterized by the fractal dimension of the broken fragment and the crack surface energy was calculated. In addition, the analytical equation of the fractal dimension of the broken fragment and the crack surface energy was established. The relationship between the specimen energy absorption and the crack surface energy was compared and analyzed. The results show that the concrete specimens are mainly tensile split failure modes under different impact speeds. The fractal dimension, absorption energy, and crack surface energy all increase with the increase in impact speed and decrease with the increase in the aggregate rate. When the aggregate rate is different, the effective utilization rate of the absorbed energy is the largest when the aggregate content is 37%. The surface energy of the crack can be used to estimate the concrete dynamic intensity.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuefeng Ou ◽  
Xuemin Zhang ◽  
Han Feng ◽  
Cong Zhang ◽  
Xianshun Zhou ◽  
...  

A layered rock usually exhibits strong anisotropy due to its layered structure. In order to study the anisotropic effect on its static and dynamic tensile properties, a medium strength anisotropy slate is chosen and tested in five groups of bedding plane dip angles. The dynamic tests were carried out by a split Hopkinson pressure bar (SHPB), and the failure process of rock samples is recorded by a high-speed camera. The failure mode and strength characteristic of the slate are analyzed. The static test results show that layered structure significantly affects the failure mode, and the influence of the bedding plane depends on the degree of anisotropy. The static and dynamic “tensile strength” exhibit the “U” type strength anisotropy. For samples in the same dip angle group, the “tensile strength” shows clear dynamic strengthening effect, and the growth rate is most significant at θ = 45°.


Sign in / Sign up

Export Citation Format

Share Document