scholarly journals Characteristics of air showers with energy more than 1017 eV reconstructed by the Yakutsk array radio emission measurements

2019 ◽  
Vol 208 ◽  
pp. 08017
Author(s):  
Stanislav Knurenko ◽  
Igor Petrov

The paper presents results on the longitudinal development of air showers of ultra-high energies obtained from radio emission measurements at the Yakutsk array. The energy, the depth of maximum development of individual showers are determined and a statistical analysis of Xmax in order to estimate the fluctuation of air shower development σ(Xmax) in the energy region 1017-1018 eV is performed. It is shown that σ(Xmax) in the energy region 1017-1018 eV is equal to 50-60 g·cm-2, which doesn’t contradict with a mixed composition of cosmic rays - protons and helium nuclei. This is also indicated by data of the Xmax value dependence on energy.

2006 ◽  
Vol 21 (supp01) ◽  
pp. 65-69 ◽  
Author(s):  
R. Engel ◽  
N. N. Kalmykov ◽  
A. A. Konstantinov

Cherenkov and geosynchrotron radiation are considered as two fundamental mechanisms of the radio emission generated by extensive air showers (EAS). The code EGSnrc is used for Monte-Carlo simulations of the individual shower development. Calculations of the radial dependence and frequency spectrum of the emitted radiation are performed for the LOPES experiment frequency range.


2019 ◽  
Vol 216 ◽  
pp. 02012
Author(s):  
T. Marshalkina ◽  
P.A. Bezyazeekov ◽  
N.M. Budnev ◽  
D. Chernykh ◽  
O. Fedorov ◽  
...  

The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50?. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers.


2019 ◽  
Vol 216 ◽  
pp. 02002 ◽  
Author(s):  
Ewa M. Holt

The Auger Engineering Radio Array (AERA) is a radio detector at the Pierre Auger Observatory and it is dedicated to measure the radio emission of cosmic-ray air showers. AERA is co-located with the underground muon detectors of the Auger Muons and Infill for the Ground Array (AMIGA). This provides a perfect setup to experimentally test the benefits of combining muons and radio emission for estimating the primary mass. We have investigated this combination using air-shower simulations. We compared the performance for mass separation of this new method to alternative methods in which the electrons and muons are measured with particle detectors at the surface. Forshowers with zenith angles below 50° the new method is of comparable performance, and for showers more inclinedthan 50° it is clearly superior. Therefore, measuring the radio signal in addition to the muons significantly improves the mass sensitivity compared to techniques using solely particle measurements.


2012 ◽  
Vol 27 (39) ◽  
pp. 1230038 ◽  
Author(s):  
ALESSIO TAMBURRO

The IceCube Observatory at the South Pole is composed of a cubic kilometer scale neutrino telescope buried beneath the icecap and a square-kilometer surface water Cherenkov tank detector array known as IceTop. The combination of the surface array with the in-ice detector allows the dominantly electromagnetic signal of air showers at the surface and their high-energy muon signal in the ice to be measured in coincidence. This ratio is known to carry information about the nuclear composition of the primary cosmic rays. This paper reviews the recent results from cosmic-ray measurements performed with IceTop/IceCube: energy spectrum, mass composition, anisotropy, search for PeV γ sources, detection of high energy muons to probe the initial stages of the air shower development, and study of transient events using IceTop in scaler mode.


1978 ◽  
Vol 31 (5) ◽  
pp. 439 ◽  
Author(s):  
K Sivaprasad

An estimate is made of the electric field expected from the ionization electrons produced by an extensive air shower moving in the geoelectric field for frequencies from 10 kHz to 10 MHz. The calculations are for a geoelectric production mechanism, and they invoke quite reasonable assumptions regarding the shower development. The calculated fields are found to be comparable with those produced by the geomagnetic mechanism, and fall short of the high values observed in this frequency range. Higher fields cannot be obtained from the present shower mechanism under normal weather conditions, but would require exceptionally large values for the geoelectric field (1 MVm-1) or a model for electron diffusion that is radically different from that assumed here.


Detailed studies are made of the fluctuations of a wide range of parameters in computer-simulated extensive air showers in attempts to design experiments which will be sensitive to the mass number of primary cosmic rays of energy 10 17 -10 18 eV. The computational procedures depend heavily on the Monte Carlo technique and the model for the high-energy interactions of nucleons and pions is simple, involving pionization only. The magnitudes of the fluctuations of the electron size, muon sizes and depths of cascade maximum development are determined as a function of the energy and mass of the primary particle. The origin of the fluctuations is identified for showers initiated by primary protons of various energies from studies of the correlations between observable parameters of the showers and measures of the stage of longitudinal development of the electron cascade. The correlation between the different components of air showers and between these components and the longitudinal cascade development are evaluated for over 50 parameters in the showers. Measurable parameters depending little on the longitudinal development of a shower (and hence being good measures of the primary particle energy) and those depending strongly on the cascade development (being indications of the nature of the primary particle) are identified.


2019 ◽  
Vol 216 ◽  
pp. 04006 ◽  
Author(s):  
K. Mulrey ◽  
A. Bonardi ◽  
S. Buitink ◽  
A. Corstanje ◽  
H. Falcke ◽  
...  

The LOw-Frequency ARray (LOFAR) telescope measures radio emission from air showers. In order to interpret the data, an absolute, frequency dependent calibration is required. Due to a growing need for a better understanding of the measured frequency spectrum, we revisit the calibration of the LOFAR antennas in the range of 30—80 MHz. Using the galactic radio emission and a detailed model of the LOFAR signal chain, we find a calibration that provides an absolute energy scale and allows us to study frequency dependent features in measured air shower signals.


1968 ◽  
Vol 46 (10) ◽  
pp. S241-S242 ◽  
Author(s):  
S. N. Vernov ◽  
G. B. Khristiansen ◽  
A. T. Abrosimov ◽  
V. B. Atrashkevitch ◽  
V. D. Volovik ◽  
...  

Nine separate antennas for the detection of radio pulses from extensive air showers have been installed at the Moscow State University air shower array. Data are presented on the lateral distribution of the radiated power in individual showers.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 60-64
Author(s):  
T. HUEGE ◽  
H. FALCKE

As a basis for the interpretation of data gathered by LOPES and other experiments, we have carried out Monte Carlo simulations of geosynchrotron radio emission from cosmic ray air showers. The simulations, having been verified carefully with analytical calculations, reveal a wealth of information on the characteristics of the radio signal and their dependence on specific air shower parameters. In this article, we review the spatial characteristics of the radio emission, its predicted frequency spectrum and its dependence on important air shower parameters such as the shower zenith angle, the primary particle energy and the depth of the shower maximum, which can in turn be related to the nature of the primary particle.


Sign in / Sign up

Export Citation Format

Share Document