scholarly journals 3-D thermal and radiation-matter interaction simulations of a SiC solid-state detector for neutron flux measurements in JSI TRIGA Mark II research reactor

2021 ◽  
Vol 253 ◽  
pp. 04009
Author(s):  
V. Valero ◽  
L. Ottaviani ◽  
A. Lyoussi ◽  
H. Ghninou ◽  
V. Radulović ◽  
...  

Neutron detection is a relevant topic in the field of nuclear instrumentation. It is at the heart of the concerns for fusion applications (neutron diagnostics, measurements inside the Test Blanket Modules TBM) as well as for fission applications (in-core and ex-core monitoring, neutron mapping or safety applications in research reactors). Moreover, due to the even more harsh conditions of the future experimental reactors such as the Jules Horowitz Reactor (JHR) or International Thermonuclear Experimental Reactor (ITER), neutron detectors need to be adapted to high neutron and γ fluxes, high nuclear heating rates and high temperatures. Consequently, radiation and temperature hardened sensors with fast response, high energy resolution and stability in a mixed neutron and γ environment are required. All these requirements make wide-bandgap semiconductors and, more precisely, Silicon Carbide (SiC) serious candidates due to their intrinsic characteristics in such extreme environments. Thus, since the last decades, SiC-based detectors are developed and studied for neutron detection in various nuclear facilities. In this paper, a SiC-based neutron detector is 3-D designed and studied through thermal and radiation-matter interaction numerical simulations for a future irradiation campaign at the Jožef Stefan Institute TRIGA Mark II research reactor in Slovenia. Firstly, this paper presents the scientific background and issues of our SiC-based detectors. In a second part the 3-D geometry is shown. Thereafter, the 3-D numerical thermal simulation results are reported. Finally, the 3-D numerical radiation/matter interaction simulations results are presented.

1992 ◽  
Vol 36 ◽  
pp. 671-677
Author(s):  
E.A. Payzant ◽  
H.W. King

AbstractUsing a high purity germanium solid state detector with sufficiently high energy resolution to discriminate between copper Kα and Kβ radiation, the superlattice reflections of the ordered Cu-Zn β′ brass structure have be detected by the anomalous dispersion effect. By coupling the high purity germanium solid state detector to a multichannel analyser, the superlattice reflections of the β′ brass structure were also detected by energy dispersive x-ray diffraction. Other applications for this combination of high resolution detector, electronic energy discriminator and multichannel analyser are indicated.


2015 ◽  
Vol 93 (2) ◽  
pp. 218-226 ◽  
Author(s):  
T.K. Sham ◽  
R.A. Gordon

We report recent observations of resonant inelastic X-ray scattering (RIXS) at the cerium L3-edge of CePO4, CeO2, and Ce3+ ion in aqueous solution. The intensity of the emission spectrum, including the dispersive Raman below the edge and the emerging nondispersive fluorescence above the edge, was recorded with a solid-state detector with low-energy resolution and a WDX detector with modestly high-energy resolution. The yield of the emission was used to monitor the cerium L3-edge X-ray absorption near edge structures (XANES) in a constant initial state (CIS) mode as the photon energy sweeps across the cerium L3-edge. The CIS XANES is compared with the XANES recorded using the nondispersive fluorescence yield, Lα, in a constant final state (CFI) mode. It is found that the Raman yield dominates the total emission in the pre-edge region and diminishes rapidly at threshold. The RIXS of Ce3+ in aqueous solution exhibits similar behavior as CePO4. The post-whiteline RIXS intensity of CePO4 exhibits a correlation with excitation energy. CeO2 also exhibits a less intense whiteline in CIS XANES compared with the XANES detected with normal fluorescence. The implications of these observations with improved instrumental resolution are noted.


2018 ◽  
Vol 170 ◽  
pp. 08006 ◽  
Author(s):  
O. Obraztsova ◽  
L. Ottaviani ◽  
A. Klix ◽  
T. Döring ◽  
O. Palais ◽  
...  

Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C) and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV), wide band gap energy (3.27 eV) and high thermal conductivity (4.9 W/cm·K), SiC can operate in harsh environment (high temperature, high pressure and high radiation level) without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV), higher threshold displacement energy (40-50 eV) and thermal conductivity (22 W/cm·K), which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD) diamond detectors irradiated with 14 MeV neutrons at room temperature.


Author(s):  
P.E. Batson

Use of the STEM to obtain precise electronic information has been hampered by the lack of energy loss analysis capable of a resolution and accuracy comparable to the 0.3eV energy width of the Field Emission Source. Recent work by Park, et. al. and earlier by Crewe, et. al. have promised magnetic sector devices that are capable of about 0.75eV resolution at collection angles (about 15mR) which are great enough to allow efficient use of the STEM probe current. These devices are also capable of 0.3eV resolution at smaller collection angles (4-5mR). The problem that arises, however, lies in the fact that, even with the collection efficiency approaching 1.0, several minutes of collection time are necessary for a good definition of a typical core loss or electronic transition. This is a result of the relatively small total beam current (1-10nA) that is available in the dedicated STEM. During this acquisition time, the STEM acceleration voltage may fluctuate by as much as 0.5-1.0V.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yiwen Xiao ◽  
Lang Chen ◽  
Kun Yang ◽  
Deshen Geng ◽  
Jianying Lu ◽  
...  

AbstractHost–guest materials exhibit great potential applications as an insensitive high-energy–density explosive and low characteristic signal solid propellant. To investigate the mechanism of the improvement of the energy of host–guest explosives by guest molecules, ReaxFF-lg reactive molecular dynamics simulations were performed to calculate the thermal decomposition reactions of the host–guest explosives systems ICM-102/HNO3, ICM-102/H2O2, and pure ICM-102 under different constant high temperatures and different heating rates. Incorporation of guest molecules significantly increased the energy level of the host–guest system. However, the initial reaction path of the ICM-102 molecule was not changed by the guest molecules. The guest molecules did not initially participate in the host molecule reaction. After a period of time, the H2O2 and HNO3 guest molecules promoted cleavage of the C–N bond of the ICM-102 ring. Stronger oxidation and higher oxygen content resulted in the guest molecules more obviously accelerating destruction of the ICM-102 ring structure. The guest molecules accelerated the initial endothermic reaction of ICM-102, but they played a more important role in the intermediate exothermic reaction stage: incorporation of guest molecules (HNO3 and H2O2) greatly improved the heat release and exothermic reaction rate. Although the energies of the host–guest systems were clearly improved by incorporation of guest molecules, the guest molecules had little effect on the thermal stabilities of the systems.


2020 ◽  
Vol 105 (6) ◽  
pp. 795-802 ◽  
Author(s):  
Marion Louvel ◽  
Anita Cadoux ◽  
Richard A. Brooker ◽  
Olivier Proux ◽  
Jean-Louis Hazemann

Abstract The volcanic degassing of halogens, and especially of the heavier Br and I, received increased attention over the last 20 years due to their significant effect on atmospheric chemistry, notably the depletion of stratospheric ozone. While the effect of melt composition on halogen diffusion, solubility, or fluid-melt partitioning in crustal magma chambers has been thoroughly studied, structural controls on halogen incorporation in silicate melts remain poorly known, with only few studies available in simplified borosilicate or haplogranite compositions. Here, we demonstrate that high-energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) with a crystal analyzer spectrometer (CAS) is well-suited for the study of Br speciation in natural volcanic glasses which can contain lower Br concentrations than their laboratory analogs. Especially, HERFD-XAS results in sharper and better-resolved XANES and EXAFS features than previously reported and enables detection limits for EXAFS analysis down to 100 ppm when previous studies required Br concentrations above the 1000 ppm level. XANES and EXAFS analyses suggest important structural differences between synthetic haplogranitic glass, where Br is surrounded by Na and next-nearest oxygen neighbors, and natural volcanic glasses of basaltic to rhyodacitic compositions, where Br is incorporated in at least three distinct sites, surrounded by Na, K, or Ca. Similar environments, involving both alkali and alkaline earth metals have already been reported for Cl in Ca-bearing aluminosilicate glass and our study thus underlines that the association of Br with divalent cations (Ca2+) has been underestimated in the past due to the use of simplified laboratory analogs. Overall, similarities in Cl and Br structural environments over a large array of compositions (46–67 wt% SiO2) suggest that melt composition alone may not have a significant effect on halogen degassing and further support the coupled degassing of Cl and Br in volcanic systems.


Sign in / Sign up

Export Citation Format

Share Document