Effect of temperature and storage on açaí (Euterpe oleracea) fruit water uptake: simulation of fruit transportation and pre-processing

Fruits ◽  
2007 ◽  
Vol 62 (5) ◽  
pp. 295-302 ◽  
Author(s):  
José Dalton Cruz Pessoa ◽  
Paula Vanessa da Silva e Silva
Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 134
Author(s):  
Ana Isabel Galván ◽  
Alicia Rodríguez ◽  
Alberto Martín ◽  
Manuel Joaquín Serradilla ◽  
Ana Martínez-Dorado ◽  
...  

Dried fig is susceptible to infection by Aspergillus flavus, the major producer of the carcinogenic mycotoxins. This fruit may be contaminated by the fungus throughout the entire chain production, especially during natural sun-drying, post-harvest, industrial processing, storage, and fruit retailing. Correct management of such critical stages is necessary to prevent mould growth and mycotoxin accumulation, with temperature being one of the main factors associated with these problems. The effect of different temperatures (5, 16, 25, 30, and 37 °C) related to dried-fig processing on growth, one of the regulatory genes of aflatoxin pathway (aflR) and mycotoxin production by A. flavus, was assessed. Firstly, growth and aflatoxin production of 11 A. flavus strains were checked before selecting two strains (M30 and M144) for in-depth studies. Findings showed that there were enormous differences in aflatoxin amounts and related-gene expression between the two selected strains. Based on the results, mild temperatures, and changes in temperature during drying and storage of dried figs should be avoided. Drying should be conducted at temperatures >30 °C and close to 37 °C, while industry processing, storage, and retailing of dried figs are advisable to perform at refrigeration temperatures (<10 °C) to avoid mycotoxin production.


2017 ◽  
Vol 63 (No. 9) ◽  
pp. 417-424 ◽  
Author(s):  
Ahmadloo Fatemeh ◽  
Kouchaksaraei Masoud Tabari ◽  
Goodarzi Gholam Reza ◽  
Salehi Azadeh

This study investigated methods to overcome seed dormancy in Crataegus pseudoheterophylla Pojarkova seeds. Seeds with and without endocarps were treated with gibberellic acid (GA<sub>3</sub>) at different concentrations and four storage temperatures. Then they were stratified in an alternate temperature regime. The amount of absorbed water in seeds with endocarps was monitored by measuring the fresh weight of seeds for 0, 24, 48, 72, and 96 h of imbibition. The electrical conductivity (EC) and the percentage of water uptake by seeds stored for 12 months at laboratory temperature, in a refrigerator, in a freezer, and in freeze-thaw conditions were measured. The highest germination (59.7%) was recorded in seeds without endocarps treated with 3,000 mg·l<sup>–1</sup> GA<sub>3 </sub>and stored either in a laboratory or a refrigerator (32.7–35.3%). All treatments of seeds without endocarps where GA<sub>3</sub> was applied showed statistically higher percentages of germination than the control. Seeds with endocarps stored at refrigerator temperature imbibed water up to 44.3% with increasing imbibition periods, whereas the amount of seeds that absorbed water in freezer and freeze-thaw conditions was almost the same. The tests showed the highest EC during storage in the freezer, with the lowest water uptake and viability in seeds stored during the freeze-thaw process.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 440
Author(s):  
Andreas Winkler ◽  
Deborah Riedel ◽  
Daniel Alexandre Neuwald ◽  
Moritz Knoche

Sweet cherries are susceptible to rain-cracking. The fruit skin is permeable to water, but also to solutes. The objectives of this study were to (1) establish whether a solute efflux occurs when a sweet cherry fruit is incubated in water; (2) identify the solutes involved; (3) identify the mechanism(s) of efflux; and (4) quantify any changes in solute efflux occurring during development and storage. Solute efflux was gravimetrically measured in wetted fruit as the increasing dry mass of the bathing solution, and anthocyanin efflux was measured spectrophotometrically. Solute and anthocyanin effluxes from a wetted fruit and water influx increased with time. All fluxes were higher for the cracked than for the non-cracked fruit. The effluxes of osmolytes and anthocyanins were positively correlated. Solute efflux depended on the stage of development and on the cultivar. In ‘Regina’, the solute efflux was lowest during stage II (25 days after full bloom (DAFB)), highest for mid-stage III (55 DAFB), and slightly lower at maturity (77 DAFB). In contrast with ‘Regina’, solute efflux in ‘Burlat’ increased continuously towards maturity, being 4.8-fold higher than in ‘Regina’. Results showed that solute efflux occurred from wetted fruit. The gravimetrically determined water uptake represents a net mass change—the result of an influx minus a solute efflux.


2010 ◽  
pp. 167-171
Author(s):  
O. Dvir ◽  
M. Rom ◽  
I. Farber ◽  
D. Beno-Moualem ◽  
S. Meir ◽  
...  

Cytopathology ◽  
2011 ◽  
Vol 23 (2) ◽  
pp. 103-107 ◽  
Author(s):  
L. Antonangelo ◽  
F. S. Vargas ◽  
M. M. P. Acencio ◽  
A. P. Corá ◽  
L. R. Teixeira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document