scholarly journals Effects of Geometrical Parameters of Internal Blown Flap and Its Optimal Design

Author(s):  
Rui Liu ◽  
Junqiang Bai ◽  
Yasong Qiu ◽  
Guozhu Gao

The internal blown flap was numerically simulated. Firstly, a parameterization method was developed, which can properly describe the shape of the internal blown flap according to such geometrical parameters as flap chord length, flap deflection, height of blowing slot and its position. Then the reliability of the numerical simulation was validated through comparing the pressure distribution of the CC020-010EJ fundamental generic circulation control airfoil with the computational results and available experiment results. The effects of the geometrical parameters on the aerodynamic performance of the internal blown flap was investigated. The investigation results show that the lift coefficient increases with the increase of flap chord length and flap deflection angle and with the decrease of height of blowing slot and its front position. Lastly, a method of optimal design of the geometrical parameters of the internal blown flap was developed. The design variables include flap chord length, flap deflection, height of blowing slot and its position. The optimal design is based on maximum lift coefficient, the angle of attack of 5 degrees and the design constraint of stall angle of attack of less than 9 degrees. The optimization results show that the optimal design method can apparently raise the lift coefficient of an internal blown flap up to 1.7.

2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2021 ◽  
Vol 11 (20) ◽  
pp. 9561
Author(s):  
Shunlei Zhang ◽  
Xudong Yang ◽  
Bifeng Song ◽  
Zhuoyuan Li ◽  
Bo Wang

Rotor airfoil design involves multi-point and multi-objective complex constraints. How to significantly improve the maximum lift coefficient and lift-to-drag ratio of rotor airfoil is a fundamental problem, which should be solved urgently in the development of high-performance helicopter rotor blades. To address this, discrete co-flow jet (DCFJ) technology is one methods with the most potential that can be harnessed to improve the performance of the rotor airfoil. In this study, wind tunnel experiments are conducted to study the effect of DCFJ technology on lift enhancement and drag reduction of OA312 airfoil. Furthermore, the performance improvement effects of the open co-flow jet (CFJ) and DCFJ technologies are studied. In addition, the influence of fundamental parameters, such as the obstruction factor and relative unit length, are analyzed. Results demonstrate that DCFJ technology is better than CFJ technology on the performance enhancement of the OA312 airfoil. Moreover, the DCFJ rotor airfoil can significantly reduce the drag coefficient and increase the maximum lift coefficient and the stall angle of attack. The maximum lift coefficient can be increased by nearly 67.3%, and the stall angle of attack can be delayed by about 12°. The DCFJ rotor airfoil can achieve the optimal performance when the obstruction factor is 1/2 and the relative unit length is 0.025.


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


1964 ◽  
Vol 86 (2) ◽  
pp. 197-204
Author(s):  
J. Auslaender

Linearized airfoil theory—in conjunction with a mapping technique—is applied to the calculation of the forces and moments acting on supercavitating hydrofoils operating near a free surface at very large Froude numbers and zero cavitation number. Only the effects of angle of attack and flap deflection are considered. The results—intended for engineering use—are presented primarily in the form of curves of flap effectiveness, lift curve slope, pitching and hinge moment coefficient, and flap loading versus flap-chord ratio, depth being introduced as a parameter. Lift-drag ratio and hinge moment coefficient as functions of lift coefficient are presented for typical operating conditions.


2021 ◽  
Author(s):  
Scott Lindsay

Upper surface flaps commonly referred to as spoilers or drag brakes can increase maximum lift, and improve aerodynamic efficiency at high, near-stall angles of attack. This phenomenon was studied experimentally and computationally using a 0.307626 m chord length NACA 2412 airfoil in six different configurations, and one baseline clean configuration. A wind tunnel model was placed in the Ryerson Low Speed Wind Tunnel (atmospheric, closed-circuit, 3 ft × 3 ft test section) at a Reynold’s number of approximately 780,000 and a Mach number of 0.136. The wind tunnel study increased the lift coefficient by 0.393%-2.497% depending on the spoiler configuration. A spoiler of 10% chord length increased the maximum lift coefficient by 2.497 % when deflected 8º, by 2.110% when deflected 15º, and reduced the maximum lift coefficient by 2.783% when deflected 25º. A spoiler of 15% chord length produced smaller maximum lift coefficient gains; 0.393% when deflected 8º, by 1.760% when deflected 15º, and reduced the maximum lift coefficient by 4.475% when deflected 25º. Deflecting the spoiler increased the stall angle between 37.658% and 87.544% when compared with the clean configuration. The drag coefficient of spoiler configurations was lower than the clean configuration at angles of attack above 18º. The combination of the increased lift and reduced drag at angles of attack above 18º created by the spoiler configurations resulted in a higher aerodynamic efficiency than the clean configuration case. A 10% chord length spoiler deflected at 8º produced the highest aerodynamic efficiency gains. At low angles of attack, the computational study produced consistently higher lift coefficients compared with the wind tunnel experiment. The lift-slope was consistent with the wind tunnel experiment lift-slope. The spoiler airfoil stall behaviour was inconsistent with the results from the wind tunnel experiment. The drag coefficient results were consistent with the wind tunnel experiment at low angles of attack. However, the spoiler equipped airfoils did not reduce drag at high angles of attack. Therefore, the computational model was not valid for the spoiler configurations at high angles of attack.


2021 ◽  
Author(s):  
Scott Lindsay

Upper surface flaps commonly referred to as spoilers or drag brakes can increase maximum lift, and improve aerodynamic efficiency at high, near-stall angles of attack. This phenomenon was studied experimentally and computationally using a 0.307626 m chord length NACA 2412 airfoil in six different configurations, and one baseline clean configuration. A wind tunnel model was placed in the Ryerson Low Speed Wind Tunnel (atmospheric, closed-circuit, 3 ft × 3 ft test section) at a Reynold’s number of approximately 780,000 and a Mach number of 0.136. The wind tunnel study increased the lift coefficient by 0.393%-2.497% depending on the spoiler configuration. A spoiler of 10% chord length increased the maximum lift coefficient by 2.497 % when deflected 8º, by 2.110% when deflected 15º, and reduced the maximum lift coefficient by 2.783% when deflected 25º. A spoiler of 15% chord length produced smaller maximum lift coefficient gains; 0.393% when deflected 8º, by 1.760% when deflected 15º, and reduced the maximum lift coefficient by 4.475% when deflected 25º. Deflecting the spoiler increased the stall angle between 37.658% and 87.544% when compared with the clean configuration. The drag coefficient of spoiler configurations was lower than the clean configuration at angles of attack above 18º. The combination of the increased lift and reduced drag at angles of attack above 18º created by the spoiler configurations resulted in a higher aerodynamic efficiency than the clean configuration case. A 10% chord length spoiler deflected at 8º produced the highest aerodynamic efficiency gains. At low angles of attack, the computational study produced consistently higher lift coefficients compared with the wind tunnel experiment. The lift-slope was consistent with the wind tunnel experiment lift-slope. The spoiler airfoil stall behaviour was inconsistent with the results from the wind tunnel experiment. The drag coefficient results were consistent with the wind tunnel experiment at low angles of attack. However, the spoiler equipped airfoils did not reduce drag at high angles of attack. Therefore, the computational model was not valid for the spoiler configurations at high angles of attack.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shubham Jain ◽  
Nekkanti Sitaram ◽  
Sriram Krishnaswamy

Steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of variation in Reynolds number on the aerodynamics of the airfoil without and with a Gurney flap of height of 3% chord are presented in this paper. RANS based one-equation Spalart-Allmaras model is used for the computations. Both lift and drag coefficients increase with Gurney flap compared to those without Gurney flap at all Reynolds numbers at all angles of attack. The zero lift angle of attack seems to become more negative as Reynolds number increases due to effective increase of the airfoil camber. However the stall angle of attack decreased by 2° for the airfoil with Gurney flap. Lift coefficient decreases rapidly and drag coefficient increases rapidly when Reynolds number is decreased below critical range. This occurs due to change in flow pattern near Gurney flap at low Reynolds numbers.


2011 ◽  
Vol 110-116 ◽  
pp. 4269-4275
Author(s):  
K. Lam ◽  
Y.F. Lin ◽  
Y. Liu ◽  
L. Zou

The effect of the wavy surface on the aerodynamic characteristics of an airfoil is studied using the large eddy simulations. A more gentle lift characteristic is obtained during stall. For angles of attack less than the baseline stall angle of a NACA0012 airfoil, a lift coefficient reduction was observed for the wavy airfoils, while the lift coefficient increases up to 23% greater than that of a NACA0012 airfoil when the angle of attack is larger than the baseline stall angle of the NACA0012 airfoil.


2012 ◽  
Vol 225 ◽  
pp. 43-48
Author(s):  
M.F. Yaakub ◽  
A.A. Wahab ◽  
Mohammad Fahmi Abdul Ghafir ◽  
Siti Nur Mariani Mohd Yunos ◽  
Siti Juita Mastura Mohd Salleh ◽  
...  

During helicopter forward flight, the retreating blade revolves at high angle of attack compared to advancing blade in order to balance the lift and also to stabilise the helicopter. However, due to the aerodynamics limitations of the retreating blade at forward flight, stall may occur at high angle of attack compared with the advancing blade. This phenomenon is dangerous for pilot when controlling and balancing the helicopter while flying against strong wind. This paper investigates the capabilities of introducing multiple vortex traps on the upper surface of the helicopter airfoil in order to delay the stall angle of retreating helicopter blade. Blade Element Theory (BET) was applied to scrutinize the lift force along the helicopter blade. Computational Fluid Dynamic (CFD) analyses using the Shear-Stress Transport (SST) turbulence model was carried out to investigate the effect of groove on delaying the stall and to predict the separation of flow over the airfoil. Based on the CFD analyses, the optimization of the groove was done by analyzing the numbers and locations of the grooves. Finally, the results from both BET and the CFD analyses were utilised to obtain the lift force achieved by the vortex trap. The study showed that the presence of multiple vortex traps has successfully increased the lift coefficient and most importantly, delaying the stall angle.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 959 ◽  
Author(s):  
Xinkai Li ◽  
Ke Yang ◽  
Xiaodong Wang

To explore the effect of the height of vortex generators (VGs) on the control effect of boundary-layer flow, the vortex characteristics of a plate and the aerodynamic characteristics of an airfoil for VGs were studied by both wind tunnel experiments and numerical methods. Firstly, the ratio of VG height (H) to boundary layer thickness (δ) was studied on a flat plate boundary layer; the values of H are 0.1δ, 0.2δ, 0.5δ, 1.0δ, 1.5δ, and 2.0δ. Results show that the concentrated vortex intensity and VG height present a logarithmic relationship, and vortex intensity is proportional to the average kinetic energy of the fluid in the height range of the VG. Secondly, the effects of height on the aerodynamic performance of airfoils were studied in a wind tunnel using three VGs with H = 0.66δ, 1.0δ, and 1.33δ. The stall angle of the airfoil with and without VGs is 18° and 8°, respectively, so the VGs increase the stall angle by 10°. The maximum lift coefficient of the airfoil with VGs increases by 48.7% compared with the airfoil without VGs, and the drag coefficient of the airfoil with VGs is 84.9% lower than that of the airfoil without VGs at an angle of attack of 18°. The maximum lift–drag ratio of the airfoil with VGs is lower than that of the airfoil without VGs, so the VGs do not affect the maximum lift–drag ratio of the airfoil. However, a VG does increase the angle of attack of the best lift–drag ratio.


Sign in / Sign up

Export Citation Format

Share Document