Fractal dimensions of dynamically triangulated random surfaces

1992 ◽  
Vol 2 (12) ◽  
pp. 2181-2190 ◽  
Author(s):  
Christian Münkel ◽  
Dieter W. Heermann
TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 17-23 ◽  
Author(s):  
WANHEE IM ◽  
HAK LAE LEE ◽  
HYE JUNG YOUN ◽  
DONGIL SEO

Preflocculation of filler particles before their addition to pulp stock provides the most viable and practical solution to increase filler content while minimizing strength loss. The characteristics of filler flocs, such as floc size and structure, have a strong influence on preflocculation efficiency. The influence of flocculant systems on the structural characteristics of filler flocs was examined using a mass fractal analysis method. Mass fractal dimensions of filler flocs under high shear conditions were obtained using light diffraction spectroscopy for three different flocculants. A single polymer (C-PAM), a dual cationic polymer (p-DADMAC/C-PAM) and a C-PAM/micropolymer system were used as flocculants, and their effects on handsheet properties were investigated. The C-PAM/micropolymer system gave the greatest improvement in tensile index. The mass fractal analysis showed that this can be attributed to the formation of highly dense and spherical flocs by this flocculant. A cross-sectional analysis of the handsheets showed that filler flocs with more uniform size were formed when a C-PAM/micropolymer was used. The results suggest that a better understanding of the characteristics of preflocculated fillers and their influence on the properties of paper can be gained based on a fractal analysis.


1998 ◽  
Vol 38 (2) ◽  
pp. 9-15 ◽  
Author(s):  
J. Guan ◽  
T. D. Waite ◽  
R. Amal ◽  
H. Bustamante ◽  
R. Wukasch

A rapid method of determining the structure of aggregated particles using small angle laser light scattering is applied here to assemblages of bacteria from wastewater treatment systems. The structure information so obtained is suggestive of fractal behaviour as found by other methods. Strong dependencies are shown to exist between the fractal structure of the bacterial aggregates and the behaviour of the biosolids in zone settling and dewatering by both pressure filtration and centrifugation methods. More rapid settling and significantly higher solids contents are achievable for “looser” flocs characterised by lower fractal dimensions. The rapidity of determination of structural information and the strong dependencies of the effectiveness of a number of wastewater treatment processes on aggregate structure suggests that this method may be particularly useful as an on-line control tool.


2020 ◽  
Vol 8 ◽  
Author(s):  
Leny Montheil ◽  
Virginia G. Toy ◽  
James M. Scott ◽  
Thomas M. Mitchell ◽  
David P. Dobson

In natural friction melts, or pseudotachylites, clast textures and glass compositions can influence the frictional behavior of faults hosting pseudotachylites, and are, in turn, sensitive to the processes involved in pseudotachylite formation. Quantification of these parameters in situations where the host rock composition and formation conditions are well-constrained, such as analogue experiments, may yield calibrations that can be employed in analysis of natural pseudotachylites. In this paper, we experimentally-generated pseudotachylites in granitoid rocks (tonalite and Westerly granite) at Pconf = 40 MPa and slip rates of ∼0.1 m s−1, comparable to the conditions under which natural pseudotachylite is known to form in Earth’s upper crust. We find variations in both clast textures and glass compositions that reflect formation processes, and probably influence the frictional behavior of similar natural faults hosting pseudotachylite. Quantification of particle size and shape distribution with a semi-automatic image analysis method, combined with analysis of glass and host-rock composition of these experimentally generated pseudotachylites, reveals that the textures of pseudotachylite material evolved by combinations of 1) comminution, 2) heterogeneous frictional flash melting, and 3) homogeneous (diffusive) clast melting and/or marginal decrepitation. Fractal dimensions of pseudotachylite-hosted clasts (D ∼ 3) that are greater than those of marginal fragmented host rock particles (gouge, D ∼ 2.4), reflect an increase of the intensity of comminution by slip localisation during a pre-melting phase. Chemical analyses demonstrate that these pseudotachylite glasses were generated by frictional flash melting, where host rock phases melt individually. Biotite is the least resistant to melting, feldspar intermediate, and quartz is the most resistant. The peudotachylite glass generated in these experiments has an alkaline composition, is depleted in SiO2 compared to the bulk host-rock, and shows heterogeneous compositions in a single sample related to proximity to host-rock minerals. The percentage contributions of host rock phases to the melt, calculated by a mixing model, shows that glass compositions are dominated by plagioclase and biotite. Within the melt, margins of clasts were dissolved uniformly by diffusion and/or affected by marginal decrepitation, resulting in convex and round shapes with convexities averaging ∼0.8 and circularities averaging ∼0.65.


2003 ◽  
Vol 06 (02) ◽  
pp. 241-249
Author(s):  
JOSEPH L. PE

Many sequences from number theory, such as the primes, are defined by recursive procedures, often leading to complex local behavior, but also to graphical similarity on different scales — a property that can be analyzed by fractal dimension. This paper computes sample fractal dimensions from the graphs of some number-theoretic functions. It argues for the usefulness of empirical fractal dimension as a distinguishing characteristic of the graph. Also, it notes a remarkable similarity between two apparently unrelated sequences: the persistence of a number, and the memory of a prime. This similarity is quantified using fractal dimension.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 46
Author(s):  
Pedram Nasr ◽  
Hannah Leung ◽  
France-Isabelle Auzanneau ◽  
Michael A. Rogers

Complex morphologies, as is the case in self-assembled fibrillar networks (SAFiNs) of 1,3:2,4-Dibenzylidene sorbitol (DBS), are often characterized by their Fractal dimension and not Euclidean. Self-similarity presents for DBS-polyethylene glycol (PEG) SAFiNs in the Cayley Tree branching pattern, similar box-counting fractal dimensions across length scales, and fractals derived from the Avrami model. Irrespective of the crystallization temperature, fractal values corresponded to limited diffusion aggregation and not ballistic particle–cluster aggregation. Additionally, the fractal dimension of the SAFiN was affected more by changes in solvent viscosity (e.g., PEG200 compared to PEG600) than crystallization temperature. Most surprising was the evidence of Cayley branching not only for the radial fibers within the spherulitic but also on the fiber surfaces.


2021 ◽  
Author(s):  
Sebastian Dinesen ◽  
Pia Søndergaard Jensen ◽  
Maria Bloksgaard ◽  
Søren Leer Blindbæk ◽  
Jo G.R. De Mey ◽  
...  

Introduction As the only part of the human vasculature, retina is available for direct, non-invasive inspection. Retinal vascular fractal dimension (DF) is a method to measure the structure of the retinal vascular tree, with higher non-integer values between 1 and 2 representing a more complex and dense retinal vasculature. Retinal vascular structure has been associated with a variety of systemic diseases and this study examined the association of DF and macrovascular cardiac disease in a case-control design. Methods Retinal fundus photos were captured with Topcon TRC-50X in 38 persons that had coronary artery bypass grafting (CABG, cases) and 37 cardiovascular healthy controls. The semi-automatic software VAMPIRE was used to measure retinal DF. Results Patients with CABG had lower DF of the retinal main venular vessels compared to the control group (1.15 vs. 1.18, p=0.01). In a multivariable regression model adjusted for gender and age, eyes in the fourth quartile with higher DF were less likely to have CABG compared to patients in the first (OR, 7.20; 95% confidence interval, 1.63 to 31.86; p=0.009) and second quartile (OR, 8.25; 95% confidence interval, 1.70 to 40.01; p=0.009). Conclusions This study demonstrates that lower complexity of main venular vessels associates with higher risk of having CABG. The research supports the hypothesis that the retinal vascular structure can be used to assess non-ocular macrovascular disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Sun ◽  
Shun Liu ◽  
Sheng Zeng ◽  
Shanyong Wang ◽  
Shaoping Wang

AbstractTo investigate the influence of the fissure morphology on the dynamic mechanical properties of the rock and the crack propagation, a drop hammer impact test device was used to conduct impact failure tests on sandstones with different fissure numbers and fissure dips, simultaneously recorded the crack growth after each impact. The box fractal dimension is used to quantitatively analyze the dynamic change in the sandstone cracks and a fractal model of crack growth over time is established based on fractal theory. The results demonstrate that under impact test conditions of the same mass and different heights, the energy absorbed by sandstone accounts for about 26.7% of the gravitational potential energy. But at the same height and different mass, the energy absorbed by the sandstone accounts for about 68.6% of the total energy. As the fissure dip increases and the number of fissures increases, the dynamic peak stress and dynamic elastic modulus of the fractured sandstone gradually decrease. The fractal dimensions of crack evolution tend to increase with time as a whole and assume as a parabolic. Except for one fissure, 60° and 90° specimens, with the extension of time, the increase rate of fractal dimension is decreasing correspondingly.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1546
Author(s):  
Mohsen Soltanifar

How many fractals exist in nature or the virtual world? In this paper, we partially answer the second question using Mandelbrot’s fundamental definition of fractals and their quantities of the Hausdorff dimension and Lebesgue measure. We prove the existence of aleph-two of virtual fractals with a Hausdorff dimension of a bi-variate function of them and the given Lebesgue measure. The question remains unanswered for other fractal dimensions.


Sign in / Sign up

Export Citation Format

Share Document