Modelling of changes in physical and mechanical properties of structural materials during long-term exposures at elevated temperatures

2004 ◽  
Vol 120 ◽  
pp. 191-199
Author(s):  
J. Kohout

Long-term exposures of various industrial structural materials at sufficiently elevated temperatures cause substantial changes in materials structures and, consequently, substantial changes in their physical and materials properties. The paper is focused to the influence of thermodegradation of glass-fibre-reinforced polyamide 66 in dry air and gear oil on its mechanical properties. As the thermodegradation of polymer materials is diffusion controlled process, the paper starts with the description of water diffusion in tested material. Then a very simple degradation mechanism is proposed for modelling the main features of real degradation processes. Regression functions describing the changes in mechanical properties of polyamide details during exposure are verified by the fit of experimental results. In the end of the paper some general considerations about the changes in other structural materials during exposures are done and supported by some experimental results.

Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


2021 ◽  
pp. 009524432110203
Author(s):  
Sudhir Bafna

It is often necessary to assess the effect of aging at room temperature over years/decades for hardware containing elastomeric components such as oring seals or shock isolators. In order to determine this effect, accelerated oven aging at elevated temperatures is pursued. When doing so, it is vital that the degradation mechanism still be representative of that prevalent at room temperature. This places an upper limit on the elevated oven temperature, which in turn, increases the dwell time in the oven. As a result, the oven dwell time can run into months, if not years, something that is not realistically feasible due to resource/schedule constraints in industry. Measuring activation energy (Ea) of elastomer aging by test methods such as tensile strength or elongation, compression set, modulus, oxygen consumption, etc. is expensive and time consuming. Use of kinetics of weight loss by ThermoGravimetric Analysis (TGA) using the Ozawa/Flynn/Wall method per ASTM E1641 is an attractive option (especially due to the availability of commercial instrumentation with software to make the required measurements and calculations) and is widely used. There is no fundamental scientific reason why the kinetics of weight loss at elevated temperatures should correlate to the kinetics of loss of mechanical properties over years/decades at room temperature. Ea obtained by high temperature weight loss is almost always significantly higher than that obtained by measurements of mechanical properties or oxygen consumption over extended periods at much lower temperatures. In this paper, data on five different elastomer types (butyl, nitrile, EPDM, polychloroprene and fluorocarbon) are presented to prove that point. Thus, use of Ea determined by weight loss by TGA tends to give unrealistically high values, which in turn, will lead to incorrectly high predictions of storage life at room temperature.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 70 ◽  
Author(s):  
Wen Hua ◽  
Jianxiong Li ◽  
Shiming Dong ◽  
Xin Pan

Water–rock interactions can significantly deteriorate the physical and mechanical properties of rocks, and it has been identified as one of the significant factors influencing the stability and safety of structures in rock–soil engineering. In this study, the fracture mechanical properties of sandstone under periodic water–rock interactions and long-term immersion have been studied with central cracked Brazilian disk specimens. The degradation mechanism of water–rock interactions was also studied using a scanning electron microscope (SEM). Finally, the generalized maximum tangential stress and generalized maximum tangential strain criteria were adopted to evaluate the experimental results. The results show that periodic water–rock interactions can remarkably affect the fracture resistance of sandstone. With the increase in the number of cycles, the pure mode I, pure mode II, and mixed mode fracture toughness decreases greatly, however, the values of KIf/KIC and KIIf/KIC decrease slightly. Furthermore, the fracture resistance of sandstone influenced by cyclic wetting–drying is more significant than long-term immersion. Moreover, the fracture criteria, which considers the effect of T-stress, can reproduce the test results very well.


Author(s):  
Georg Frommeyer ◽  
Sven Knippscheer

Aluminum-rich intermetallic compounds of the Al3X-type with transmission metals (X = Ti. Zr, Nb, V) of Groups IVb and Vb are of interest in the development of novel high-temperature and lightweight structural materials. This article describes the important physical and mechanical properties of trialuminides with DO22 structure and their L12 variations. Topical coverage includes: crystal structure and selected physical properties, plastic deformation, oxidation behavior, and applications.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6692
Author(s):  
Xianhui Zhao ◽  
Haoyu Wang ◽  
Linlin Jiang ◽  
Lingchao Meng ◽  
Boyu Zhou ◽  
...  

The long-term property development of fly ash (FA)-based geopolymer (FA−GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA−GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA−GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA−GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS−FA−GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N−A−S−H) gel and calcium silicate hydration (C−S−H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 205 ◽  
Author(s):  
Aqil M. ALmusawi ◽  
Thulfiqar S. Hussein ◽  
Muhaned A. Shallal

Recent developments in the production of ecologically friendly building composites have led to a renewed interest in the use of vegetable fibers as a reinforcement element. Traditional pure Plaster of Paris (POP) can suffer from the development of micro-cracks due to thermal expansion. Therefore, sisal fiber was studied for its potential as an ecological element to restrict and delay the development of micro-cracks in POP. Different sisal proportions of 0, 2, 4, 6, 8 and 10 wt. % of POP were used to characterize the physical and mechanical properties of POP at the ambient temperature. Then, the effects of temperatures of 25, 100, 200, 300, 400 and 500  were investigated. Results proved that the composite of 10% sisal fiber had the best mechanical properties. Also, when the fiber content was increased, the composite’s performance was enhanced, becoming better able to resist elevated temperatures. However, raising the temperature to 300 or above had a negative effect on the mechanical properties, which were significantly decreased due to the degradation of the sisal fiber. 


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qifang Xie ◽  
Lipeng Zhang ◽  
Shenghua Yin ◽  
Baozhuang Zhang ◽  
Yaopeng Wu

Fires are always known for seriously deteriorating concrete in structures, especially for those with certain carbonation due to long-time service. In this paper, 75 prism specimens were prepared and divided into four groups (three carbonated groups and one uncarbonated group). Specimens were tested under different temperatures (20, 300, 400, 500, 600, and 700°C), exposure times (3, 4, and 6 hours), and cooling methods (water and natural cooling). Surface characteristics, weight loss rate, and residual mechanical properties (strength, initial elastic modulus, peak, and ultimate compressive strains) of carbonated concrete specimens after elevated temperatures were investigated and compared with that of the uncarbonated ones. Results show that the weight loss rates of the carbonated concrete specimens are slightly lower than that of the uncarbonated ones and that the cracks are increased with raising of temperatures. Surface colors of carbonated concrete are significantly changed, but they are not sensitive to cooling methods. Surface cracks can be evidently observed on carbonated specimens when temperature reaches 400°C. Residual compressive strength and initial elastic modulus of carbonated concrete after natural cooling are generally larger than those cooled by water. The peak and ultimate compressive strains of both carbonated and uncarbonated concrete specimens increase after heating, but the values of the latter are greater than that of the former. Finally, the constitutive equation to predict the compressive behaviors of carbonated concrete after high temperatures was established and validated by tests.


2019 ◽  
Vol 116 ◽  
pp. 00002 ◽  
Author(s):  
Imad Rezakalla Antypas ◽  
Ghias Kharmanda ◽  
Alexey Dyachenko ◽  
Tatiana Savostina

During the rubber long-term storage in the open air and under the influence of certain temperatures, there is a real threat to the environment where environmental damages cannot be ignored. The objective of this paper is to study the mechanical properties of rubber during its processing by vulcanization after adding some materials to improve their properties. The used materials are: rubber from tires where the proportion of rubber varies from 70-78%, vulcanization granules of rubber, non-vulcanized natural NR rubber, and granulated sulphur. Curves of stress-strain of the recycled rubber are modelled at different diameters of the granules added to the materials for vulcanization removal. As result, the improvement of the mechanical properties are obtained by increasing the diameter of the granules but there a threshold which should not be exceeded.


Sign in / Sign up

Export Citation Format

Share Document