ELECTRON YIELD DETECTORS FOR NEAR SURFACE EXAFS AT ATMOSPHERIC PRESSURE

1986 ◽  
Vol 47 (C8) ◽  
pp. C8-159-C8-162 ◽  
Author(s):  
K. I. PANDYA ◽  
K. YANG ◽  
R. W. HOFFMAN ◽  
W. E. O'GRADY ◽  
D. E. SAYERS
2006 ◽  
Vol 33 (18) ◽  
pp. n/a-n/a ◽  
Author(s):  
E. Kellner ◽  
A. J. Baird ◽  
M. Oosterwoud ◽  
K. Harrison ◽  
J. M. Waddington

Author(s):  
Yudong Li ◽  
Michael Hinshelwood ◽  
Gottlieb S Oehrlein

Abstract Atmospheric pressure plasma has shown promise in improving thermally activated catalytic reactions through a process termed plasma-catalysis synergy. In this work, we investigated atmospheric pressure plasma jet (APPJ)-assisted CH4 oxidation over a Ni/SiO2.Al2O3 catalyst. Downstream gas-phase products from CH4 conversion were quantified by Fourier transform infrared spectroscopy (FTIR). The catalyst near-surface region was characterized by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The catalyst was observed to be activated at elevated temperature (500 °C) if it was exposed to the APPJ operated at large plasma power. “Catalyst activation” signifies that the purely thermal conversion of CH4 using catalysts which had been pre-exposed to plasma became more intense and produced consistently CO product, even if the plasma was extinguished. Without the application of the APPJ to the Ni catalyst surface this was not observed at 500 °C. The study of different exposure conditions of the activated catalyst indicates that the reduction of the catalyst by the APPJ is likely the cause of the catalyst activation. We also observed a systematic shift of the vibrational frequency of adsorbed CO on Ni catalyst when plasma operating conditions and catalyst temperatures were varied and discussed possible explanations for the observed changes. This work provides insights into the plasma-catalyst interaction, especially catalyst modification in the plasma catalysis process, and potentially demonstrates the possibility of utilizing the surface CO as a local probe to understand the plasma-catalyst interaction and shed light on the complexity of plasma catalysis.


1987 ◽  
Vol 121 (5) ◽  
pp. 251-257 ◽  
Author(s):  
G. Tourillon ◽  
E. Dartyge ◽  
A. Fontaine ◽  
M. Lemonnier ◽  
F. Bartol

2019 ◽  
Vol 109 (5) ◽  
pp. 1948-1967 ◽  
Author(s):  
Lei Qin ◽  
Frank L. Vernon ◽  
Christopher W. Johnson ◽  
Yehuda Ben‐Zion

Abstract We investigate coherences of seismic data recorded during three years (2015–2017) at the Piñon Flats Observatory (PY) array and a collocated 148 m deep borehole station B084, along with oceanic data from a buoy southwest of the PY array. Seismic and barometric recordings at PY stations are analyzed with a multitaper spectral technique. The coherence of signals from seismic sources is >0.6 at 0.05–8 Hz between closely spaced (<65  m) surface stations and decreases to ∼0.2 in frequency bands in which the wavelengths are smaller than interstation distances. There are several local coherence increases at 1–8 Hz between nearby (<65  m) surface stations, whereas large coherence values between a surface and 148 m deep borehole stations are only present at the secondary microseism (∼0.14  Hz). These points to significant modification of seismic recordings in the top crust, and those continual near‐surface failures might produce shallow rapidly attenuating signals at surface stations. Incoherent local atmospheric effects induce incoherent seismic signals in low‐ and high‐frequency ranges through different coupling mechanisms. Between 0.003 and 0.05 Hz, atmospheric loadings generate ground tilts that contaminate the two horizontal seismic recordings and decrease their coherence, whereas the vertical component is less affected. At 1–8 Hz, coupling of atmospheric pressure with surface structures transmits incoherent signals into the ground, degrading the seismic coherence in all three components. The two horizontal coherences show seasonal variations with extended coherent frequency bands in winter and spring, likely to be produced by seasonal variations in microseisms and local ground tilts. The coherences also contain high anomalies between 2 and 4 Hz resulting from anthropogenic activities. The results provide useful information on instrument characteristics and variations in the shallow crustal response to earthquakes, seasonal and ambient sources of seismic energy, along with atmospheric pressure–temperature changes and anthropogenic activities.


2016 ◽  
Vol 685 ◽  
pp. 676-679
Author(s):  
K.A. Lozovoy ◽  
D.V. Grigoryev ◽  
V.F. Tarasenko ◽  
M.A. Shulepov

In this paper the influence of the volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of CdHgTe (MCT) epitaxial films of p-type conductivity is investigated. Measurements of electro-physical parameters of MCT samples after irradiation have shown that a layer exhibiting n-type conductivity is formed in the near-surface area of epitaxial films. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. The obtained results show that application of volume nanosecond discharge in air at atmospheric pressure is promising for the modification of the surface properties of epitaxial films of MCT.


1988 ◽  
Vol 37 (5) ◽  
pp. 2450-2464 ◽  
Author(s):  
A. Erbil ◽  
G. S. Cargill III ◽  
R. Frahm ◽  
R. F. Boehme

2008 ◽  
Vol 34 (4) ◽  
pp. 296-299 ◽  
Author(s):  
M. A. Shulepov ◽  
V. F. Tarasenko ◽  
I. M. Goncharenko ◽  
N. N. Koval’ ◽  
I. D. Kostyrya

2016 ◽  
Vol 34 (2) ◽  
pp. 202-209 ◽  
Author(s):  
Cheng Zhang ◽  
Mikhail V. Erofeev ◽  
Zhi Fang ◽  
Mikhail A. Shulepov ◽  
Zhongsheng Zhou ◽  
...  

AbstractRunaway electrons preionized diffuse discharge (REP DD) could generate volume non-thermal plasmas at atmospheric pressure, thus is widely used for surface modification. In this paper, two pulsed generators are used to produce REP DD for modifying copper (Cu) foil in atmospheric air. One generator produces repetitive pulses with a peak voltage of 40 kV and a rise time of 150 ns. The other generator produces single pulse with a peak voltage of 280 kV and a rise time of 0.5 ns. After the treatment, the modification results for including the macro topography, chemical composition and microhardness in different depths of the Cu surface are analyzed. In order to estimate the modification results in different areas of the Cu foil, several points from the center to the edge of the Cu sample are selected. It could be observed that the maximal modification effect usually appears in the area where the density of the diffuse discharge plasma is highest. The experimental results show REP DD treatment could significantly decrease the water contact angle and increase surface energy of the Cu foil. Meanwhile, it could decrease the carbon concentration and increase oxygen concentration in the near-surface layer of the Cu sample, and enhance the microhardness in different depths of the Cu foil.


Sign in / Sign up

Export Citation Format

Share Document