scholarly journals Conservation paradox of giant arapaima Arapaima gigas (Schinz, 1822) (Pisces: Arapaimidae): endangered in its native range in Brazil and invasive in Indonesia

Author(s):  
Jana Marková ◽  
Rikho Jerikho ◽  
Yusli Wardiatno ◽  
Mohammad Mukhlis Kamal ◽  
André Lincoln Barosso Magalhães ◽  
...  

Ornamental aquaculture is known to be one of the main sources of non-native species and Indonesia has been identified as one of the leading suppliers of these organisms worldwide. Released or escaped ornamental aquatic animals can establish new populations and become invasive. On the other hand, some invasive species can be also endangered in their native range, which is called the “Biodiversity Conservation Paradox”. This is true for Arapaima gigas, one of the popular ornamental creatures and the largest bony fish of all, which is threatened in its native range in parts of Amazonia and which has been found to occur in various localities in Java and Sumatra in Indonesia. Based on climate matching we found the vast majority of Indonesian territory to be suitable for this species establishment. Keeping in mind the size and predatory behaviour of A. gigas, we discussed possible consequences of its spread and impacts on native biota in Indonesia.

2021 ◽  
Author(s):  
Inês Cerveira ◽  
Vânia Baptista ◽  
Maria Alexandra Teodósio ◽  
Pedro Morais

Abstract Promoting the consumption of edible aquatic invasive species has gained popularity to minimize its impacts while easing pressure on native resources. Weakfish Cynoscion regalis (Bloch & Schneider, 1801) is one of the most recent invasive fish species in the Iberian Peninsula (Europe) which once sustained an important fishery in the native range (Northwest Atlantic Ocean). Portugal ranks third in the list of the world’s top fish consumers, so promoting a weakfish fishery could at least help minimize the impacts upon native species, since weakfish have innate traits that are likely appreciated by Portuguese fish consumers. However, introducing a new species to consumers is challenging owing to consumers’ habits and unfamiliarity with the species. So, we aimed to (i) evaluate the acceptance of weakfish by a panel of Portuguese fish consumers and (ii) create outreach actions – partnerships with local Chefs and press releases – to explain to a broader public what invasive species are and promote the consumption of edible aquatic invasive species. The survey that we conducted to Portuguese fish consumers showed that weakfish has great chances of being well accepted by the public – 90% of consumers would buy weakfish because they appreciated its appearance, flavour, and texture, besides being a wild fish. The outreach actions reached a few million people because 46 online articles were published, and three news pieces broadcasted on national television. Overall, our strategy greatly increased the public’s awareness about invasive species, which can be replicated elsewhere in the world.


2012 ◽  
Vol 18 (2) ◽  
pp. 77 ◽  
Author(s):  
Heather Parks ◽  
Kyle Clifton ◽  
Lauren Best ◽  
Bridget Johnson

PEST-PROOF (exclusion) fences are designed to prevent non-native, predatory and pest species from repopulating an area set aside to protect vulnerable native plant and animal species. Pest-proof fencing provides security from invasive species, but can isolate the native species enclosed within. On one hand, some rare native species exist on the mainland due to the pest-free status achieved through the use of exclusion fences. On the other hand, these reintroduced populations are now isolated a situation where they would not be found naturally (Jamieson et al. 2006). Exclusion fences must be constantly maintained or the sanctuary risks reinvasion. An important question for conservation biologists and managers to answer is therefore — when is exclusion fencing the best option for protecting native species from introduced pests? We have drawn our examples from New Zealand and Australia where progress has been made with regard to the design and utilization of exclusion fences.


2014 ◽  
Vol 10 (8) ◽  
pp. 20140398 ◽  
Author(s):  
Calum MacNeil ◽  
Jaimie T. A. Dick

Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.


Check List ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. 2134 ◽  
Author(s):  
Kathryn E. Perez ◽  
Victoria Garcia Gamboa ◽  
Caitlin M. Schneider ◽  
Romi L. Burks

Resacas, or oxbow lakes, form from old river channels. In the Rio Grande, resacas provide habitat for diverse wildlife, including native and non-native species. Biologists unexpectedly found pink egg masses on emergent vegetation (November 2015) and later adult apple snails (May 2016) within a resaca at a former fish hatchery in Brownsville, Texas. This report extends the non-native range of Pomacea maculata Perry, 1810 by 429 km southeast in Texas. Our findings imply that abandoned waterbodies, such as fish hatcheries, can act as unrecognized conduits for non-native invasive species.


2020 ◽  
Vol 45 (1) ◽  
pp. 212-218
Author(s):  
Bruno Dematteis ◽  
María S. Ferrucci ◽  
Pablo Ortega-Baes ◽  
Juan P. Coulleri

Abstract—Invasive species must colonize new habitats away from their native range; therefore, factors affecting plant dispersal play a key role in invasion. The ploidy level and genome size (or Cx value) can affect the dispersal traits, physiology, and ecology of invasive species over a few generations, generating individuals that can face fluctuating environments, exploit new ones, and compete with native species. Several studies have demonstrated that invasive species tend to have smaller genomes than their noninvasive congeners, which is explained by the role that the Cx value plays in phenotypic evolution and ecological tolerance. In order to test this hypothesis, we compare the genome size variation in Argentine populations (invasive range) vs. South African populations (native range) of S. madagascariensis. To meet our goals, we estimated the Cx value of invasive populations collected on field trips, while for native populations we considered available published data. We extracted the bioclimatic variables in order to establish the ecological amplitude in which the genome sizes may be distributed. Our results evidenced larger genomes in the invasive range than in the native one. Furthermore, we propose that large genomes of the invasive populations could be mainly explained by the founder genotypes effect and the anthropogenic introduction of this species to Argentina. In addition, we demonstrated that genotypes with big genomes can tolerate different environmental conditions from those of their native range. Therefore, they could present a greater ability for colonizing new environments. The implications and importance of ploidy level in the invasion of S. madagascariensis are discussed.


2011 ◽  
Vol 143 (5) ◽  
pp. 479-503 ◽  
Author(s):  
Laura L. Timms ◽  
Sandy M. Smith

AbstractLittle research has addressed the impacts of invasive-species establishment on native forest insect communities. Such information is lacking even for gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), the most thoroughly studied invasive forest insect. We investigated the ecological impacts of gypsy moth on native species at sites in north-central Ontario, Canada, with and without significant histories of gypsy moth defoliation over a 2-year period. Patterns in native forest caterpillar communities are described using measures of species diversity and multivariate analysis. We documented a transition from low-level to dominant gypsy moth populations. Sites with different gypsy moth outbreak histories exhibited differences in rank-abundance distributions and dominance structures in the first year of the study; by the second year, gypsy moth was dominant at sites of both types irrespective of their previous defoliation history. Contrary to our predictions, we found that gypsy moth outbreak history had no significant effects on native caterpillar community diversity or structure. However, sites with currently high gypsy moth abundance demonstrated significant shifts in late-season caterpillar community structure. Our results suggest that observed community differences were due to the presence of a highly abundant folivore, and not to permanent shifts in the native community because of the introduction of an invasive species.


Climate ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 172
Author(s):  
Peter J. Kappes ◽  
Cassandra E. Benkwitt ◽  
Dena R. Spatz ◽  
Coral A. Wolf ◽  
David J. Will ◽  
...  

Climate change represents a planetary emergency that is exacerbating the loss of native biodiversity. In response, efforts promoting climate change adaptation strategies that improve ecosystem resilience and/or mitigate climate impacts are paramount. Invasive Alien Species are a key threat to islands globally, where strategies such as preventing establishment (biosecurity), and eradication, especially invasive mammals, have proven effective for reducing native biodiversity loss and can also advance ecosystem resilience and create refugia for native species at risk from climate change. Furthermore, there is growing evidence that successful eradications may also contribute to mitigating climate change. Given the cross-sector potential for eradications to reduce climate impacts alongside native biodiversity conservation, we sought to understand when conservation managers and funders explicitly sought to use or fund the eradication of invasive mammals from islands to achieve positive climate outcomes. To provide context, we first summarized available literature of the synergistic relationship between invasive species and climate change, including case studies where invasive mammal eradications served to meet climate adaptation or mitigation solutions. Second, we conducted a systematic review of the literature and eradication-related conference proceedings to identify when these synergistic effects of climate and invasive species were explicitly addressed through eradication practices. Third, we reviewed projects from four large funding entities known to support climate change solutions and/or native biodiversity conservation efforts and identified when eradications were funded in a climate change context. The combined results of our case study summary paired with systematic reviews found that, although eradicating invasive mammals from islands is an effective climate adaptation strategy, island eradications are poorly represented within the climate change adaptation and mitigation funding framework. We believe this is a lost opportunity and encourage eradication practitioners and funders of climate change adaptation to leverage this extremely effective nature-based tool into positive conservation and climate resilience solutions.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 867C-867
Author(s):  
Ouina C. Rutledge ◽  
Patricia S. Holloway

The germination, establishment, survival, and public preference of four wild-flower seed mixes were evaluated in relation to irrigation and seasonal sowing date. The mixes included two commercial nonindigenous wildflower mixes, a commercial mix with indigenous and nonindigenous wildflowers, and an experimental mix composed exclusively of Alaska native wildflowers. The two latter mixes were sown with and without `Tundra' glaucous bluegrass (Poa glauca). The two nonindigenous mixes exhibited the greatest seedling establishment during the first season. Fall sowing and irrigation during seed germination significantly increased species establishment for all mixes. In the second season, 11 nonindigenous species did not reappear, whereas all of the indigenous species reappeared. The experimental mix had the greatest species richness of the six mixes in the second season. The addition of grass to the mixes did not significantly affect wildflower species richness in either the first or second season. Survey respondents preferred the nonindigenous wildflower mixes to those containing Alaska native wildflowers because of a greater mix of colors that appeared earlier in the first season than the other mixes. Alaska native species recommended for wildflower mixes include Polemonium acutiflorum, Lupinus arcticus, Hedysarum mackenzii, Arnica alpina, and Aster sibiricus.


2019 ◽  
Author(s):  
Grant Duffy ◽  
Jasmine R Lee

Warming across ice-covered regions will result in changes to both the physical and climatic environment, revealing new ice-free habitat and new climatically suitable habitats for non-native species establishment. Recent studies have independently quantified each of these aspects in Antarctica, where ice-free areas form crucial habitat for the majority of terrestrial biodiversity. Here we synthesise projections of Antarctic ice-free area expansion, recent spatial predictions of non-native species risk, and the frequency of human activities to quantify how these facets of anthropogenic change may interact now and in the future. Under a high-emissions future climate scenario, over a quarter of ice-free area and over 80 % of the ~14 thousand km2 of newly uncovered ice-free area could be vulnerable to invasion by one or more of the modelled non-native species by the end of the century. Ice-free areas identified as vulnerable to non-native species establishment were significantly closer to human activity than unsuitable areas were. Furthermore, almost half of the new vulnerable ice-free area is within 20 km of a site of current human activity. The Antarctic Peninsula, where human activity is heavily concentrated, will be at particular risk. The implications of this for conservation values of Antarctica and the management efforts required to mitigate against it are in need of urgent consideration.


Sign in / Sign up

Export Citation Format

Share Document