scholarly journals Development of in-situ observation system of dynamic contact interface between dies and materials during microforming operation

2015 ◽  
Vol 21 ◽  
pp. 09008
Author(s):  
Tetsuhide Shimizu ◽  
Tai Kakegawa ◽  
Ming Yang
Polar Biology ◽  
2021 ◽  
Author(s):  
Philipp Neitzel ◽  
Aino Hosia ◽  
Uwe Piatkowski ◽  
Henk-Jan Hoving

AbstractObservations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusaAglantha digitaleand appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores,Beroespp.,Euplokamissp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.


1995 ◽  
Vol 81 (6) ◽  
pp. 607-612 ◽  
Author(s):  
Takayuki NARUSHIMA ◽  
Naoki KIKUCHI ◽  
Makoto MARUYAMA ◽  
Haruo ARASHI ◽  
Yuichiro NISHINA ◽  
...  

2021 ◽  
Author(s):  
Jean-Michel Lellouche ◽  
Romain Bourdalle-Badie ◽  
Eric Greiner ◽  
Gilles Garric ◽  
Angelique Melet ◽  
...  

<p>The GLORYS12V1 system is a global eddy-resolving physical ocean and sea ice reanalysis at 1/12° resolution covering the 1993-present altimetry period, designed and implemented in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). All the essential ocean physical variables from this reanalysis are available with free access through the CMEMS data portal.</p><p>The GLORYS12V1 reanalysis is based on the current CMEMS global real-time forecasting system, apart from a few specificities that are detailed in this manuscript. The model component is the NEMO platform driven at the surface by atmospheric conditions from the ECMWF ERA-Interim reanalysis. Ocean observations are assimilated by means of a reduced-order Kalman filter. Along track altimeter sea level anomaly, satellite sea surface temperature and sea ice concentration data and in situ temperature and salinity (T/S) vertical profiles are jointly assimilated. A 3D-VAR scheme provides an additional correction for the slowly-evolving large-scale biases in temperature and salinity.</p><p>The performance of the reanalysis is first addressed in the space of the assimilated observations and shows a clear dependency on the time-dependent in situ observation system, which is intrinsic to most reanalyses. The general assessment of GLORYS12V1 highlights a level of performance at the state-of-the-art and the reliability of the system to correctly capture the main expected climatic interannual variability signals for ocean and sea ice, the general circulation and the inter-basins exchanges. In terms of trends, GLORYS12V1 shows a higher than observed  warming trend together with a lower than observed global mean sea level rise.</p><p>Comparisons made with an experiment carried out on the same platform without assimilation show the benefit of data assimilation in controlling water masses properties and their low frequency variability. Examination of the deep signals below 2000 m depth shows that the reanalysis does not suffer from artificial signals even in the pre-Argo period.</p><p>Moreover, GLORYS12V1 represents particularly well the small-scale variability of surface dynamics and compares well with independent (non-assimilated) data. Comparisons made with a twin experiment carried out at ¼° resolution allows characterizing and quantifying the strengthened contribution of the 1/12° resolution onto the downscaled dynamics.</p><p>In conclusion, GLORYS12V1 provides a reliable physical ocean state for climate variability and supports applications such as seasonal forecasts. In addition, this reanalysis has strong assets to serve regional applications and should provide relevant physical conditions for applications such as marine biogeochemistry. In a near future, GLORYS12V1 will be maintained to be as close as possible to real time and could therefore provide a relevant reference statistical framework for many operational applications.</p>


2020 ◽  
Vol 10 (24) ◽  
pp. 8804
Author(s):  
Jhonni Rahman ◽  
Yutaka Shoukaku ◽  
Tomoaki Iwai

This study examines the relationship between rubber-wheel and the contact area on the road surface. Ultraviolet-induced fluorescence microscopy was used to observe and measure the contact parts with pyranine as a dye solution. The high sensitivity to U.V. light makes it easy to distinguish contact and non-contact regions on a very small scale. The experiment was conducted in static and dynamic conditions to identify its influence on the apparent contact area of rubber-wheel and road surface. The in-situ observation of the contact area was captured and recorded using a high-speed digital camera with 1-inch a CMOS (complementary metal oxide semiconductor) sensor. Additionally, the contact area between rubber-wheel and road surface was measured using an analyzing software. The results show differences in static and dynamic contact conditions based on the operating parameters.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 917 ◽  
Author(s):  
Shimizu ◽  
Kobayashi ◽  
Vorholt ◽  
Yang

: To investigate the underlying mechanism of the effects of surface texturing on lubricated sliding friction in the metal forming operation, an in-situ observation system using transparent silica glass dies and a high speed recording camera was newly developed. To correlate the dimensional parameters of micro-dimple textured structures and tribological properties in the metal forming operation, the in-situ observation was performed during bending with the ironing process of the stainless steel sheet with a thickness of 0.1 mm. The lubrication behavior were compared between the different lubricant viscosities and the micro-dimple textures with different diameters of 10 µm, 50 µm, 100 µm fabricated by using femto-/pico-second laser processing. As a result, the textured die with dimple diameters of 10 µm and 50 µm showed the lubricant flow transferred from one to the other dimples owing to the lubricant reservoir effect, while that of 100 µm indicated the less supply of the lubricant. However, the textured die with a dimple diameter of 10 µm demonstrated higher ironing force than that of 50 µm, due to the severe adhesion of work materials inside the dimple structures. Based on these experimental findings, the dimple size dependencies on lubricant reservoirs effects and the generation of the hydrodynamic pressure were discussed by correlating with the in-situ observation results, a fluid-flow analysis and a laminar two-phase flow analysis using the finite element method.


2014 ◽  
Vol 627 ◽  
pp. 361-364 ◽  
Author(s):  
Yasuhiro Yamazaki

In this paper, an in-situ measurement of crack size as a function of applied indentation load during indentation test was conducted. To perform the in-situ measurement, an instrumented indentation test machine with the in-situ observation system was developed and used. The joints of transparent ceramics by diffusion bonding were prepared as the specimen used in this study. The indentations were performed at the interface of the joints, and in the monolithic transparent ceramics by means of the instrumented indenter with the in-situ observation system. The relationship between crack shape and indentation load, as well as, the effect of the indenter shape on it were discussed.


2021 ◽  
Vol 261 ◽  
pp. 03015
Author(s):  
Tianyang Liang ◽  
Liang Xue ◽  
Yankai Hou ◽  
Hong Zhang ◽  
Hongxian Shan

Instability of submarine slopes in Zhoushan Islands is widespread. Frequent submarine landslides pose a great threat to offshore facilities such as submarine optical cables, reclamation projects, ports and docks. In this paper, a self-developed in-situ observation system is used to observe the deformation of submarine slopes on the southwest side of Zhujiajian Island in Zhoushan Islands for 75 days. The results show that the deformation characteristics of sediments at different depths of the submarine slope are different, and the lateral deformation of bottom sediments is about 0.75 mm, which is three times as much as the deformation of overlying sediments. The deformation process presents a step-like change, and the deformation direction is consistent with the trend of submarine slope.


2021 ◽  
Vol 55 (2) ◽  
pp. 17-24
Author(s):  
Chao Li ◽  
Yan Li ◽  
Rui Zhu ◽  
Yu-ze Song ◽  
Lei Yang

Abstract Cabled seafloor in-situ observation systems have drawn much attention in recent years for their capability of facilitating long-term all-weather deep-sea data-intense marine observations. The Penglai in-situ seafloor observation system for ecological environment monitoring is proposed in this paper. The current system consists of an on-shore station, a primary node, and two secondary nodes, but more nodes can be hosted due to its scalability. A looped backbone network connects the on-shore station and primary nodes. Each primary node can host up to four secondary nodes, and each secondary node can host up to eight different sensors. Marine observation data and system work state data are collected and backed up by the on-shore station in a real-time manner. Users can access the ocean observation data via a web page interface. The proposed system has been deployed for more than half a year and will continue to work after that. The field experiment showed that the proposed system worked smoothly in system state monitoring and marine data acquisition. A large amount of oceanographic data with videos has been achieved for future studies.


2007 ◽  
Vol 539-543 ◽  
pp. 3820-3825 ◽  
Author(s):  
Yuichi Komizo ◽  
Hidenori Terasaki ◽  
Mitsuharu Yonemura ◽  
Takahiro Osuki

In order to understand the microstructure changes during welding processes , kinetic information about the phase transformation is essential. In our research group, in-situ observation systems consisting of undulator beam and imaging plate and two dimensional pixel detector have recently been used. These make it possible that phase transformation can be identified in real-time under the condition of directional-oriented solidification . In the present work, a combination of analyzing method: the in-situ observation system by X-ray diffraction technique using intense synchrotron radiation, and morphological observation by high-temperature laser scanning confocal microscopy is suggested to analyze the phase transformation during the welding process. Using the results acquired by these analysis methods, phase evolution of hypereutectoid carbon steel, during fusion welding was analyzed. The primary phase was directly identified as an austenite phase. Precipitation of pearlite phase was observed followed by the martensitic transformation.


Sign in / Sign up

Export Citation Format

Share Document