scholarly journals Fundamental Study on Operational Parameters of Diaphragmless Shock Tube

2018 ◽  
Vol 151 ◽  
pp. 02004
Author(s):  
Masanori Nishiyama ◽  
Masato Taguchi ◽  
Masashi Kashitani

This paper shows influences of initial conditions on a diaphragmless shock tube operation. This facility consists of a driver tube, a driven tube and a damp tank. The driver tube has a circular cross section with diameter of 150 mm and the driven tube, a rectangular cross section (60 mm x 150 mm). The shock tube is operated by using a quick-opening pneumatic piston instead of a diaphragm. For the operation, pressure inside the pneumatic piston (piston pressure) is quickly released by opening a solenoid valve. In this paper, the initial piston pressure was chosen as a parameter to investigate effects on test flow conditions created by the shock tube. As a result, it was found that when the piston pressure at initial condition is large, piston pressure decreased more rapidly than that obtained for a small piston pressure condition, regardless of the pressure ratio of driver and the driven tube. In the condition of a constant initial operational pressure ratio and a different piston pressure, the shock Mach number was almost constant.

1974 ◽  
Vol 41 (3) ◽  
pp. 658-662 ◽  
Author(s):  
C. W. Bert ◽  
S. Chang

The twisting stiffness of a rectangular cross section consisting of a single row of solid circular cross-section fibers embedded in a matrix is analyzed. The problem is formulated as a Dirichlet torsion problem of a multielement region and solved by the boundary-point least-squares method. Numerical results for a single-fiber square cross section compare favorably with previous relaxation-method results. New numerical results for three and five-fiber composites suggest that the torsional rigidity of a multifiber composite can be approximated from the torsional rigidities of single and three-fiber models.


1956 ◽  
Vol 23 (1) ◽  
pp. 103-108
Author(s):  
E. T. Cranch ◽  
Alfred A. Adler

Abstract Using simple beam theory, solutions are given for the vibration of beams having rectangular cross section with (a) linear depth and any power width variation, (b) quadratic depth and any power width variation, (c) cubic depth and any power width variation, and (d) constant depth and exponential width variation. Beams of elliptical and circular cross section are also investigated. Several cases of cantilever beams are given in detail. The vibration of compound beams is investigated. Several cases of free double wedges with various width variations are discussed.


2021 ◽  
Vol 11 (5) ◽  
pp. 159-170
Author(s):  
Zsolt Hegyes ◽  
Máté Petrik ◽  
L. Gábor Szepesi

During the operation of the hydrocyclone the cut size diameter is the most important data. This is connected to feed rate, which is closely related to the feed cross section. Preliminary research has revealed that square cross-section is more effective than circular cross-section. The research compared 2 types of feed cross sections at 5 different feed rates. One is a standard rectangular cross-section and the other is a square cross-section that narrows with a baffle plate. Preliminary calculations for cut size diameter have shown that better particle separation at all speeds can be achieved with the baffle plate solution. In both types, the increased velocity created decreased cut size diameter. During the simulation, the baffle plate did not cause any abnormalities in the internal pressure and velocity distributions. The simulation revealed that the particles did not behave as previously calculated.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Bai-Tao An ◽  
Jian-Jun Liu

The diffusion hole constructed on a slot-type cross section has the potential to obtain high film cooling performance. However, the end shape of the cross section can greatly affect film cooling characteristics. This study examined eight cases of diffusion slot holes with various cross-sectional end shapes. The comparison of the eight diffusion slot holes and a typical fan-shaped hole was performed with a flat plate model using a three-dimensional (3D) steady computational fluid dynamics (CFD) method. The rectangular cross section had an aspect ratio of about 3.4. The end shape variation can be described based on sidewall contraction location, size, and form. The simulations were performed under an engine-representative condition of mainstream inlet Mach number 0.3 and turbulence intensity 5.2%. The simulated results showed that a strip separation bubble caused by inlet “jetting effect” occurs near the downstream wall of the diffusion slot hole and interacts with the diffusion flow. The different end shape of the rectangular cross section leads to different sidewall static pressure and exit velocity profiles, thereby produces three cooling effectiveness patterns, single-peak, bipeak, and tripeak patterns. The tripeak pattern produces higher cooling effectiveness and relatively uniform film coverage. The structure with moderate contraction and smooth transition on two sides of the downstream wall favors creation of a tripeak pattern. Compared with the fan-shaped hole, the discharge coefficient of diffusion slot hole is slightly small in low pressure ratio range, the pressure loss ratio has little difference.


Author(s):  
Hamid Reza Nazif ◽  
Hassan Basirat Tabrizi ◽  
Farhad A Farhadpour

Three-dimensional, transient turbulent particulate flow in an FCC riser is modeled using an Eulerian/Granular approach. The turbulence in the gas phase is described by a modified realizable (kg-?g) closure model and the kinetic theory of granular flow (KTGF) is employed for the particulate phase. Separate simulations are conducted for a rectangular and a cylindrical riser with similar dimensions. The model predictions are validated against experimental data of Sommerfeld et al (2002) and also compared with the previously reported LES-KTGF simulations of Hansen et al (2003) for the rectangular riser. The (kg-?g)-KTGF model does not perform as well as the LES-KTGF model for the riser with a rectangular cross section. This is because, unlike the more elaborate LES-KTGF model, the simpler (kg-?g)-KTGF model cannot capture the large scale secondary circulations induced by anisotropic turbulence at the corners of the rectangular riser. In the cylindrical geometry, however, the (kg-?g)-KTGF model gives good prediction of the data and is a viable alternative to the more complex LES-KTGF model. This is not surprising as the circulations in the riser with a circular cross section are due to the curvature of the walls and not due to the presence of sharp corners.


2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Ayob Nazmy Nanyan ◽  
Mohamad Nur Khairul Hafizi Rohani ◽  
Muzamir Isa ◽  
Afifah Shuhada Rosmi ◽  
Ahmad Zaidi Abdullah ◽  
...  

Overvoltage phenomenon is the common problem that always occurs in the power system and can cause the electrical system network breakdown, and in some cases, it may explode. The frequent overvoltage also can affect and degrade the lifespan of the electrical power system components and network. Thus, the overvoltage sensor is needed to overcome this problem matter. The Rogowski coil (RC) is one of an inductive coil group, and it is suitable for measuring the alternating current (AC) and transient currents or overvoltage. This paper demonstrated the effect of RC magnetic flux density, B with difference cross-section, geometries sizing and the number of turns by using Finite Element Method (FEM). Commonly, there are three types of RC widely used; rectangular, circular and oval. Each of these cross-sections has different characteristics in term of performance. The results have shown that the rectangular cross-section is better than oval and circular cross-section based on the number of magnetic flux density.


2009 ◽  
Vol 15 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Artiomas Kuranovas ◽  
Douglas Goode ◽  
Audronis Kazimieras Kvedaras ◽  
Shantong Zhong

This paper represents the analysis of 1303 specimens of CFST experimental data. Test results are compared with EC4 provided method for determining the load‐bearing capacity of these composite elements. Several types of CFSTs were tested: both circular and rectangular cross‐sections with solid and hollow concrete core with axial load applied without and with moment, with sustained load and preloading. For circular cross‐section columns there is a good agreement between the test failure load and the EC4 calculation for both short and long columns with and without moment. For rectangular cross‐section columns the agreement is good except when the concrete cylinder strength was greater than 75 MPa, when many tests failed below the strength predicted by EC4. Preloading the steel tube before filling with concrete seems to have no effect on the strength. This paper also presents the stress distribution, confinement distribution and complete average longitudinal stress‐strain curves for concrete‐filled steel tubular elements. Based on the definition of the “Unified Theory”, the CFST is looked upon as an entity of a new composite material. In this paper, the research achievement of the strength and stability for centrifugal‐hollow and solid concrete filled steel tube are introduced. These behaviours relate to the hollowness ratio and the confining indexes of corresponding solid CFST. If the hollow ratio equals to 0,4–0,5 and over, the N‐ϵ relationship exists in steady descending stage. The critical stress of CFST elements stability is determined as an eccentric member with the initial eccentricity by use of finite element method. Santrauka Straipsnyje analizuojami 1303 betonšerdžių plieninių strypų bandinių eksperimentiniai duomenys. Duomenys lyginami su eurokode 4 pateiktais kompozitinių elementų laikomosios galios nustatymo metodais. Analizuojami šie betonšerdžių plieninių strypų bandinių tipai: pilnaviduriai ir tuščiaviduriai, apskrito ir stačiakampio skerspjūvio kolonos, kurių galuose veikia arba neveikia momentas, su iš anksto pridėta arba ilgalaike apkrova. Apskrito skerspjūvio kolonų laikomosios galios bandymų rezultatai atitinka skaičiavimų reikšmes, apskaičiuotas pagal eurokode 4 pateiktu metodu. Stačiakampio skerspjūvio elementų laikomosios galios reikšmių bandymo rezultatai puikiai atitinka teorines reikšmes, kai betono ritininis stipris nesiekia 75 MPa. Išankstinis elementų apkrovimas poveikio elementų laikomajai galiai beveik neturi. Taip pat nagrinėjami betonšerdžių elementų įtempių būvių pasiskirstymas, betono apspaudimo poveikis ir išilginių deformacijų ir įtempių kreivės. Pateikiama S. T. Zhong „Unifikuota teorija“, kuri nagrinėja kompozitinį elementą kaip visumą. Straipsnyje nagrinėjamos kompozitinio plieninio ir betoninio elemento stiprumo ir pastovumo sąlygos. Tokių elementų reikšmėmis. Jeigu tuštumos santykis lygus 0,4–0,5 ir daugiau, N-ε sąryšis yra kritimo stadijoje. Elgsenos stadijos keičiasi pagal tuštumos koeficientą.


2010 ◽  
Vol 638-642 ◽  
pp. 1579-1584 ◽  
Author(s):  
A.V. Nagasekhar ◽  
Carlos H. Cáceres ◽  
Mark Easton

Specimens of rectangular and circular cross section of a Mg-9Al binary alloy have been tensile tested and the cross section of undeformed specimens examined using scanning electron microscopy. The rectangular cross sections showed three scales in the cellular intermetallics network: coarse at the core, fine at the surface and very fine at the corners, whereas the circular ones showed only two, coarse at the core and fine at the surface. The specimens of rectangular cross section exhibited higher yield strength in comparison to the circular ones. Possible reasons for the observed increased strength of the rectangular sections are discussed.


2015 ◽  
Vol 784 ◽  
pp. 225-251 ◽  
Author(s):  
Ting Si ◽  
Tong Long ◽  
Zhigang Zhai ◽  
Xisheng Luo

The interaction of cylindrical converging shock waves with a polygonal heavy gas cylinder is studied experimentally in a vertical annular diaphragmless shock tube. The reliability of the shock tube facility is verified in advance by capturing the cylindrical shock movements during the convergence and reflection processes using high-speed schlieren photography. Three types of air/SF6 polygonal interfaces with cross-sections of an octagon, a square and an equilateral triangle are formed by the soap film technique. A high-speed laser sheet imaging method is employed to monitor the evolution of the three polygonal interfaces subjected to the converging shock waves. In the experiments, the Mach number of the incident cylindrical shock at its first contact with each interface is maintained to be 1.35 for all three cases. The results show that the evolution of the polygonal interfaces is heavily dependent on the initial conditions, such as the interface shapes and the shock features. A theoretical model for circulation initially deposited along the air/SF6 polygonal interface is developed based on the theory of Samtaney & Zabusky (J. Fluid Mech., vol. 269, 1994, pp. 45–78). The circulation depositions along the initial interface result in the differences in flow features among the three polygonal interfaces, including the interface velocities and the perturbation growth rates. In comparison with planar shock cases, there are distinct phenomena caused by the convergence effects, including the variation of shock strength during imploding and exploding (geometric convergence), consecutive reshocks on the interface (compressibility), and special behaviours of the movement of the interface structures (phase inversion).


1952 ◽  
Vol 19 (1) ◽  
pp. 49-53
Author(s):  
H. L. Langhaar

Abstract Recently, W. Freiberger obtained an exact solution of the problem of uniform torsion of a segment of a ring of circular cross section. This paper presents a solution of the problem for the rectangular cross section. O. Göhner previously treated this case by an approximation method.


Sign in / Sign up

Export Citation Format

Share Document