scholarly journals Biodiesel Production from Dry Microalga Biomass by Microwave-Assisted In-Situ Transesterification

2018 ◽  
Vol 156 ◽  
pp. 06005
Author(s):  
Lailatul Qadariyah ◽  
Mahfud Renova Panjaitan ◽  
Fatkhulloh Mujaddid ◽  
Ummu Kalsum

Microalga is one of the potential feedstocks in the manufacture of biodiesel because it contains high oil content. In this study, Chlorella sp. was selected because its high oil content about 28-32% of oil (based on its dry weight) and its presence is abundant among other green algae. In situ transesterification was carried out in round neck flask under microwave irradiation. Microwave irradiation can facilitate the in situ transesterification by extracted the lipid of microalga and simultaneous convert to FAME. The purposes of this study are to investigate the effect of acid catalyst concentration, microwave power, reaction time and the addition of co-solvent (n-hexane) on the yield of biodiesel, to get optimum operating conditions and to know the fatty acid compounds of biodiesel from Chlorella sp. The results of oil extraction and biodiesel were analyzed by GC-MS analysis. Based on the experiment, the yield of microalga oil was 11.37%. The optimum yield of biodiesel by in-situ transesterification was 75.68%. It was obtained at the microwave power of 450 watts, the reaction time of 60 minutes, an acid catalyst concentration of 0,2M of H2SO4, and the co-solvent addition of 10 ml.

2020 ◽  
Vol 9 (1) ◽  
pp. 113-117
Author(s):  
Mahfud Mahfud ◽  
Ummu Kalsum ◽  
Viqhi Ashwie

Aim of this research are to study and develop research related to the potential of Chlorella sp. into biodiesel with the help of microwaves in-situ transesterification by characterizing parameters such as microwave power (300; 450; 600 W) and reaction time (10; 30; 50 minutes) with catalyst concentration of KOH and molar ratio of microalga : methanol are 2% and 1:12 respectively and optimized by response surface methodology with Face Centered Central Composite Design (FCCCD). The study was carried out by dissolving the catalyst into methanol according to the variable which was then put into a reactor containing microalgae powder in the microwave and turned on according to the predetermined variable. After the reaction process is complete, the mixture is filtered and resuspended with methanol for 10 minutes to remove the remaining FAME and then the obtained filtrate is cooled. Water is added to the filtrate solution to facilitate the separation of hydrophilic components before being separated and pushed apart until 3 layers are formed. Amount of FAMEs in the first layer formed were extracted with n-hexane solution and washed with water and the FAME product obtained was then distilled to remove the remaining n hexane and then weighed. The results indicated that yield increased with increasing reaction time and microwave power with the best conditions of 50 minutes each and 440.53 watts with the highest yield reaching 35.72% (dry basis) through using of KOH catalysts with low concentrations, 2%.©2020. CBIORE-IJRED. All rights reserved


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Alex K. Koech ◽  
Anil Kumar ◽  
Zachary O. Siagi

The present technology of transesterification of vegetable oils to produce biodiesel, which is suited to replace petrodiesel, has economic challenges, and therefore, alternative sources are being explored. Microalgae, a renewable, third-generation biofuel resource, have the potential to become a viable feedstock due to their high oil content and environmentally friendly nature. The present study investigates the effect of microwave irradiation on the simultaneous extraction and transesterification of algae lipids to produce fatty acid methyl ester (FAME), in a batch reaction system using sulphuric acid catalyst. In situ transesterification combines the two steps of lipid extraction and transesterification into a single step. The microwave synthesis unit comprised of a 3-neck round bottom flask inside a 1300-Watt microwave oven, fitted with a quick-fit condenser and having an external stirrer. Response surface methodology (RSM) was used to analyse the influence of process variables, dry algae to methanol ratio 1 : 4 − 1 : 14   g / ml , algae biomass to catalyst ratio 1 : 0.0032 − 1 : 0.0368   wt % , and reaction time 1 − 11   min , at 500  rpm stirring rate for in situ reaction. FAME was analysed using gas chromatography (GC). The total lipid content of Arthrospira Spirulina platensis microalgae biomass was found to be 10.7 % by weight. The algae biomass also contained proteins at   51.83 % , moisture content at 7.8 % , and ash content 14.30 % by weight. RSM gave the optimum process conditions as dry algae biomass feed to methanol wt / vol ratio of 1 : 9, catalyst concentration of 2   wt % , and reaction time of   7   minutes   for a maximum FAME yield of 83.43   wt % . The major fatty acid composition of FAME was palmitic 43.83 % , linoleic   38.83 % , and linolenic 19.41 % . FAME properties obtained according to European Standards (EN 14214) and American Society for Testing and Materials (ASTM D 6751) standards were as follows: flash point 16 4 o C calorific value 32,911   kJ / kg , acid value 0.475 KOH / g , viscosity 4.45   m m 2 / s , and specific gravity   0.868 . The study showed that Arthrospira Spirulina platensis microalgae lipid FAME met the biodiesel standards (EN 14214 and ASTM D 6751) and has the potential to replace petrodiesel. Microwave irradiation increased the reaction rate resulting in a reduced reaction time of 7 minutes (as compared to 8 hours for conventional heating) and therefore was found to be a superior heating mode as compared to conventional heating.


2018 ◽  
Vol 37 (3) ◽  
pp. 295
Author(s):  
Mahlinda Mahlinda ◽  
Meuthia Busthan

The purpose of this research was to study the effect of the use of recovered methanol for in situ transesterification reaction candlenut seed (Aleurites moluccana L) as a biodiesel bysonication. The influence of the ratio of recovered methanol to seed, catalyst concentration, reaction time and the temperature was investigated. Important properties of biodiesel such as density, viscosity and acid number were checked according to SNI 7182:2012 standards. The result showed that the maximum yield which has been obtained was 57,85% at recovered methanol to seed ratio 40:1, catalyst concentration 4%, reaction temperature 65 °C and reaction time 80 minutes. The test result of biodiesel properties showed that two parameters (density and viscosity)  were conformed to SNI 7182:2012 standards, meanwhile acid value was higher than the maximum standards. In conclusion, the recovered methanol was feasible to produce biodiesel via in situ transesterification but the yield was lower if compared with the use of fresh methanol.                                         ABSTRAKTujuan dari penelitian ini adalah untuk mempelajari penggunaan metanol daur ulang pada reaksi transesterifikasi in situ biji kemiri (Aleurites moluccana L) menjadi biodiesel menggunakan radiasi gelombang ultrasonik. Pengaruh dari rasio metanol daur ulang terhadap biji, jumlah katalis, waktu reaksi dan temperatur telah diteliti. Sifat penting dari biodiesel seperti densitas, viskositas dan bilangan asam telah diuji menurut satandar SNI 7182:2012. Hasil penelitian menunjukkan bahwa rendemen maksimum yang dapat diperoleh adalah 57,85% pada rasio metanol daur ulang tehadap biji 40:1, jumlah katalis 4%, temperatur reaksi 65 °C dan waktu reaksi 80 menit. Hasil pengujian sifat biodiesel menunjukkan bahwa dua paramater (densitas dan viskositas) telah memenuhi standar SNI 7182:2012, sementara bilangan asam lebih tinggi dari standar maksimum. Dapat disimpulkan bahwa metanol daur ulang cocok untuk memproduksi biodiesel secara in situ transesterifikasi tetapi rendemennya lebih rendah jika dibandingkan dengan penggunaan metanol baru.Kata kunci: Biodiesel; kemiri; transesterifikasi in situ; metanol daur ulang


2016 ◽  
Vol 10 (2) ◽  
pp. 119-126
Author(s):  
Mahlinda Mahlinda ◽  
Fitriana Djafar

The main purpose of this research was to observer effect co-solvent type (n-Hexane, chloroform and without co-solvent)  toward yield and quality of biodiesel via in situ transesterification process using microwave irradiation. The process was studied at microwave power 450 watt, reaction time 4 minutes, methanol to seed ratio 25:1 and catalyst concentration 5%. The physicochemical parameters of the biodiesel produced such as viscosity, density and acid value were analysed and compared with the SNI 7182-2012 standard. The experimental result showed the maximum yield biodiesel 78,32% obtained by using co-solvent chloroform.Test result of physicochemical properties (viscosity, density and acid value) of biodiesel products using co solvent n-Hexane, chloroform and without co solvent showed that these products conform to the SNI 7182-2012 standars. The type of co-solvent only affectedon biodiesel yield dan not affected on biodiesel quality (viscosity, density and acid value).  ABSTRAKTujuan penelitian ini adalah untuk mempelajari pengaruh jenis co-solvent (n-Hexane, chloroform dan tanpa co-solvent) terhadap rendemen dan mutu biodiesel secara trasesterifikasi in situ menggunakan radiasi gelombang mikro. Proses dilakukan pada daya gelombang mikro 450 watt, waktu reaksi 4 menit, perbandingan berat metanol terhadap bahan baku 25:1 dan jumlah katalis 5%. Parameter fisiko kimia dari produk biodiesel seperti viskositas, densitas dan angka asam di analisa dan dibandingkan dengan standar SNI 7182-2012 tentang biodiesel. Hasil penelitian menunjukkan rendemen maksimum biodiesel sebesar 78,32% diperoleh dengan menggunakan co-solvent chloroform. Hasil pengujian  karakteristik fisiko kimia (viskositas, densitas dan angka asam) dari produk biodiesel menggunakan co-solvent n-Hexane, chloroform dan tanpa co-solvent menunjukkan bahwa semua parameter ini masih memenuhi standar SNI 1782-2012 tentang biodiesel. Jenis co-solvent hanya berpengaruh pada rendemen biodiesel dan tidak berpengaruh terhadap mutu biodiesel (viskositas, densitas dan bilangan asam).Kata kunci: co-solvent, in situ transesterifikasi, microwave, rendemen, mutu   


2014 ◽  
Vol 554 ◽  
pp. 500-504 ◽  
Author(s):  
Farid Nasir Ani ◽  
Ahmed Bakheit Elhameed

This paper investigated the three critical reaction parameters including catalyst concentration, microwave exit power and reaction time for the transesterification process of jatropha curcas oil using microwave irradiation. The work is an attempt to reduce the production cost of biodiesel. Similar quantities of methanol to oil molar ratio 6:1 and calcium oxide as a heterogeneous catalyst were used. The results showed that the best yield percentage 96% was obtained using 300W microwave exit power, 8 %wt CaO and 7 min. The methyl ester FAME obtained was within the standard of biodiesel fuel.


Holzforschung ◽  
2018 ◽  
Vol 72 (12) ◽  
pp. 1025-1030
Author(s):  
Mafuyu Saito ◽  
Takao Kishimoto ◽  
Masahiro Hamada ◽  
Noriyuki Nakajima ◽  
Daisuke Urabe

AbstractConversion of lignocellulose into useful chemicals is an important research topic in the area of biomass utilization. In this study, microcrystalline cellulose (MC) was dissolved in a mixed-solvent system containing the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl) andN-methyl-pyrrolidone (NMP), and the cellulose was directly converted into methyl glucoside (MG) by acid-catalyzed methanolysis aided by microwave irradiation (μWIr). Under moderate reaction temperature and pressure, and in the presence of acetyl chloride/methanol (in situformed HCl) as an acid catalyst, MG was obtained in a 42% yield. In contrast, in the absence of either IL or μWIr, the MG yield was only 5 or 21%, respectively. Both μWIr and the dissolution of cellulose in IL were quite effective for the conversion of cellulose into MG.


2020 ◽  
Vol 7 (1) ◽  
pp. 60-66
Author(s):  
Navin B. Patel ◽  
Rahul B. Parmar ◽  
Hetal I. Soni

Background: A Lewis acid promoted efficient and facile procedure for one-pot synthesis of a novel series of fluoroquinolone clubbed with thiadiazoles motifs under microwave irradiation is described here. This technique has more advantages such as high yield, a clean procedure, low reaction time, simple work-up and use of Lewis acid catalyst. Objective: Our aim is to generate a biologically active 1,3,4- thiadiazole ring system by using a onepot synthesis method and microwave-assisted heating. High yield and low reaction time were the main purposes to synthesize bioactive fluoroquinolone clubbed 1,3,4- thiadiazole moiety. Methods: Fluoroquinolone Clubbed 1,3,4-Thiadiazole Motifs was prepared by Lewis acid promoted, one-pot synthesis, under microwave irradiation. All the synthesized molecules were determined by IR, 1H NMR, 13C NMR, and Mass spectra. The antimicrobial activity of synthesized compounds was examined against two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), and three fungi (Candida albicans, Aspergillus niger, Aspergillus clavatus) using the MIC (Minimal Inhibitory Concentration) method and antitubercular activity H37Rv using L. J. Slope Method. Results: Lewis acid promoted, one-pot synthesis of Fluoroquinolone clubbed 1,3,4-Thiadiazole motifs under microwave irradiation is an extremely beneficial method because of its low reaction time and good yield. Some of these novel derivatives showed moderate to good in vitro antibacterial, antifungal, and antitubercular activity. Conclusion: One-pot synthesis of 1,3,4-Thiadiazole by using Lewis acid catalyst gives a good result for saving time and also getting more production of novel heterocyclic compounds with good antimicrobial properties via microwave heating method.


2017 ◽  
Vol 23 (3) ◽  
pp. 205-211
Author(s):  
Adriana Cristina N. de Melo ◽  
Ronaldo N. de Oliveira ◽  
João R. de Freitas Filho ◽  
Teresinha G. da Silva ◽  
Rajendra M. Srivastava

AbstractThe preparation of eight 2,3-unsaturated O-glycosides from D-glycals and alcohols, using montmorillonite K-10 as an acid catalyst, is described. The Ferrier rearrangement products were obtained in good yields using conventional heating and microwave irradiation but the reaction time was substantially reduced employing the latter procedure. The yields were slightly lower under microwave exposure. Five of the di-O-acetylated products were deacetylated to the glycosides in excellent yields. The acetylated products possess good anti-inflammatory property suggesting that the acetyl group plays an important role in reducing the inflammation. Among the compounds tested, glycosides containing thiophene as an aglycone present much better inflammation reducing characteristics than the analogues without this function.


2013 ◽  
Vol 683 ◽  
pp. 222-225
Author(s):  
Huan Wang ◽  
Li Li Geng ◽  
Bo Wu ◽  
Na Liu ◽  
Dong Zhang

Pinus massoniana pollen was hydrolyzed by using the method of orthogonal experiment in pure water under microwave irradiation. The main influence factors of pollen microwave hydrolysis reaction was confirmed as temperature, weight ratio of pollen to water, microwave power and the reaction time, and its effects on the pollen microwave hydrolysis reaction was studied in detail. The results showed that the sequence of influence factors was reaction temperature>weight ratio of pollen to water>microwave power>reaction time. The optimal reaction conditions was that the temperature, 120oC; the power, 120W; the reaction time, 150min; the weight ratio of pollen to water, 1:10.


2021 ◽  
Vol 16 (4) ◽  
pp. 733-743
Author(s):  
Alia Tasnim Hazmi ◽  
Farah B. Ahmad ◽  
Ahdyat Zain Athoillah ◽  
Ahmad Tariq Jameel

Microbial biodiesel is converted from microbial lipids via transesterification process. Most microbial biodiesel studies are focusing on the use of microalgal lipids as feedstock. Apart from using microalgae for lipid biosynthesis, lipids can also be extracted from other oleaginous microorganisms like fungi and yeast. However, there are gaps in the studies of lipid production from filamentous fungi, especially in-situ transesterification process. The aim of this project is to compare in-situ with the ex-situ transesterification of fungal biomass from Aspergillus oryzae. In ex-situ transesterification, two methods of lipid extraction, the Soxhlet extraction and the Bligh and Dyer extraction, were performed. For in-situ transesterification, two methods using different catalysts were investigated. Base-catalyzed in-situ transesterification of fungal biomass resulted on the highest Fatty Acid Methyl Esters (FAME) yield. The base-catalyzed in-situ transesterification was further optimized via Central Composite Design (CCD) of Response Surface Methodology (RSM). The parameters investigated were the catalyst loading, methanol to biomass ratio and reaction time. The optimization showed that the highest FAME yield was at 25.1% (w/w) with 10 minutes reaction time, 5% catalyst and 360:1 of the ratio of the methanol to biomass. Based on Analysis of Variance (ANOVA), the model was found to be significant according to the value of “Prob >F” of 0.0028. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document