scholarly journals The effectiveness of CFRP strengthening of steel plate girders with web opening subjected to shear

2018 ◽  
Vol 162 ◽  
pp. 04012 ◽  
Author(s):  
Mohammed Hamood ◽  
Wael AbdulSahib ◽  
Ali Abdullah

The present study is experimental by nature; it involves applying shear buckling test on seven steel-plated girders that are subjected to shear loading. Four of these girders represent the strengthened girders whereas the other three are reference girders. One of the latter type of girders has a square web opening; the second has a diamond web opening while the last one has no opening at all. The webs of the strengthened girders were adhesively attached to CFRP sheets of different patterns. This step was carried out to evaluate the most effective strengthening scheme by CFRP composite. The study aims at examining the effect of several parameters on the behavior of web girders. It further examines the percentage of increase in the ultimate shear capacity of the perforated girders that have a fixed location and size where the latter is equal to 40 percent of the web depth. Results have shown that, first, the ultimate shear load of the CFRP-strengthened girders with square web opening is higher than that of the reference girder with a square web opening; ranging from 8.7% to 15.7%. The obtained ranges depend on the orientation of the CFRP strips. Second, the ultimate shear load of the CFRP-strengthened girders with a diamond web opening is higher than the reference girder with a range of 9.8% to 21.5%. Again, the obtained ranges depend on the orientation of the CFRP strips. Analytically speaking, Von Mises stresses have been used to predict the ultimate shear load of girders with square and diamond web openings and without web opening.

1983 ◽  
Vol 18 (2) ◽  
pp. 111-117 ◽  
Author(s):  
R Narayanan ◽  
D Adorisio

Tests on eighteen small scale models which simulate the elastic and post-buckling behaviour of plate girders when subjected to shear loading are reported and discussed. The models were fabricated of steel and Araldite; the major aim was to assess whether small scale models can be employed to study shear buckling problems. A secondary object was to examine whether araldite could be used for predicting the structural behaviour and ultimate loads of plate girders. The strength and post-buckling characteristics exhibited by steel models were found to be similar to those observed by earlier investigators on full scale girders. The test results of steel models have been compared with the theoretical predictions obtained by using some ten design methods developed in different countries. Most of these methods are shown to give conservative but satisfactory predictions of the ultimate shear capacity of the model steel girders. Tests on Araldite models demonstrated that post-buckling behaviour can be observed visually on account of the large elastic deformations which the material is capable of, before collapse. However, they were found to be unsuitable for the prediction of the ultimate shear capacity. As Araldite is brittle, collapse would occur prematurely by sudden fracture before the full development of the tension field.


2012 ◽  
Vol 18 (31) ◽  
pp. 214-221
Author(s):  
Takeshi Miyashita ◽  
Yusuke Okuyama ◽  
Dai Wakabayashi ◽  
Norio Koide ◽  
Yuya Hidekuma ◽  
...  

2014 ◽  
Vol 919-921 ◽  
pp. 1952-1957
Author(s):  
Long Qi Li ◽  
Dong Hua Zhou ◽  
Wen Yuan Liao

By considering the four secondary moment functions ,which are developed according to virtual plastic stress distribution at the perforated section of continuous composite beam. reinforced opening proved to be necessary and reliable .Several reinforcing methods are reserched. mechanical properties are compared with FE results in different reinforced continuous composite beam.The result indicates that the bending and vertical shear capacity of continuous composite beam with web opening can be effectively enhanced to a certain extent. In addition,stiffness and local stability at web opening area are also increase. Effective reinforcing method is presented and can be used in engineering practice.


2014 ◽  
Vol 567 ◽  
pp. 494-498 ◽  
Author(s):  
Bashar S. Mohammed ◽  
Omar Alanni

In some cases a cut-out web opening in a reinforced concrete (RC) beam is required to facilitate the passage of electrical and mechanical pipes and ducting from one side to another. The presence of cut-out web openings will lead to decreasing in the load carrying capacity of these RC beams. Therefore, strengthening the vicinity of these openings by using Carbon Fiber Reinforced Polymer (CFRP) will represent the best practical solution. In this study, thirteen RC beams with different sizes of cut-out web openings and with different layers of CFRP strengthening and also one solid RC beam (control) were prepared and tested to failure. The outcome of this experimental and analytical study showed that the modified Eurocode 2 model can reasonably be used in computing the shear forces of RC beams having the vicinity of their cut-out web openings strengthened with single/multi layers of CFRP. In addition, for safe design purposes, a reduction factor has been suggested as well.


2012 ◽  
Vol 446-449 ◽  
pp. 3457-3461
Author(s):  
Qin Zhu Sheng ◽  
Qun Xie ◽  
Xin Wang

Adhesive anchors are widely used as post-installed fasteners in civil engineering. A typical steel-to-concrete connection includes multiple anchors which are commonly subjected to combined moment and shear loading. Based on the assumption that all anchors take up shear load, a revised method is developed for the design of ductile anchors, which considers that only the row of most stressed anchors in the tension zone are needed to meet the elliptical interaction of tension and shear capacity requirement during the design process of anchorage group under combined shear and moment loading. The ultimate strength of post-installed fastenings should be controlled by the strength of anchor steel for the purpose of connection safety and full utilization of anchor capacity. For the objective of ductile design in anchor group, the ratio of shear span could be used as an evaluation parameter in the process of strength prediction. According to the theoretical analysis and results comparison, the ductile failure of anchor steel in post-installed fastenings can be guaranteed when the ratio of shear span is greater than 0.6.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingheng Shu ◽  
Quanyi Wang ◽  
Desmond Y.R. Chong ◽  
Zhan Liu

AbstractLoadings in temporomandibular joints (TMJs) are essential factors in dysfunction of TMJs, and are barely noticed in treatment of maxillofacial deformity. The only approach, which can access stresses in TMJs, could expend day’s even weeks to complete. The objective of the study was to compare the differences of the morphological and biomechanical characteristics of TMJs between asymptomatic subjects and patients with mandibular prognathism, and to preliminarily analyze the connection between the two kinds of characteristics. Morphological measurements and finite element analysis (FEA) corresponding to the central occlusion were carried out on the models of 13 mandibular prognathism patients and 10 asymptomatic subjects. The results indicated that the joint spaces of the patients were significantly lower than those of the asymptomatic subjects, while the stresses of patients were significantly greater than those of asymptomatic subjects, especially the stresses on discs. The results of Pearson correlation analysis showed that weak or no correlations were found between the von Mises stresses and the joint spaces of asymptomatic subjects, while moderate, even high correlations were found in the patients. Thus, it was shown to be a feasible way to use morphological parameters to predict the internal loads of TMJs.


Friction ◽  
2021 ◽  
Author(s):  
Longxiang Yang ◽  
Zhanjiang Wang ◽  
Weiji Liu ◽  
Guocheng Zhang ◽  
Bei Peng

AbstractThis work is a supplement to the work of Sneddon on axisymmetric Boussinesq problem in 1965 in which the distributions of interior-stress fields are derived here for a punch with general profile. A novel set of mathematical procedures is introduced to process the basic elastic solutions (obtained by the method of Hankel transform, which was pioneered by Sneddon) and the solution of the dual integral equations. These processes then enable us to not only derive the general relationship of indentation depth D and total load P that acts on the punch but also explicitly obtain the general analytical expressions of the stress fields beneath the surface of an isotropic elastic half-space. The usually known cases of punch profiles are reconsidered according to the general formulas derived in this study, and the deduced results are verified by comparing them with the classical results. Finally, these general formulas are also applied to evaluate the von Mises stresses for several new punch profiles.


2005 ◽  
Vol 32 (2) ◽  
pp. 314-328 ◽  
Author(s):  
Young K Ju ◽  
Do-Hyun Kim ◽  
Sang-Dae Kim

The number of high-rise buildings has greatly increased in Korea, and storey height is a significant component of tall residential buildings due to the limited city area. To reduce storey height, the wide beam has been adopted in some projects in Seoul such as Trump World, Galleria Palace, and Richencia. The joints between the wide beam and the core wall were too narrow to place the reinforcement, however. This paper investigates a newly developed structural system called the innovative, technical, economical, and convenient hybrid system (iTECH system). The iTECH system has an asymmetric steel assembly with web openings, where the top plate is welded on top of inverted structural "tees" whose cut is referred to as a "honeycomb" type. Both sides of the web and the slab are filled with cast-in-place concrete. The shear capacity was experimentally evaluated and verified, with parameters determined by factors that shared the shear strength of the iTECH beam. The steel web, inner concrete panel, and outer concrete panel contributed to the shear strength of the iTECH beam. The shear stirrup did not contribute much to the shear strength, however, and therefore a design equation using the steel web and inner concrete panel was suggested.Key words: composite beam, shear capacity, monotonic test, high-rise building.


2013 ◽  
Vol 703 ◽  
pp. 200-203
Author(s):  
Shao Biao Cai ◽  
Yong Li Zhao

This study presents a first attempt to develop a numerical three-dimensional multilayered (more than 2 composite layered coatings) elasticperfectly plastic rough solids model to investigate the contact behavior under combined normal loading and tangential traction. Contact analyses are performed to study the effects composite thin film layers. Local contact pressure profiles, von Mises stresses, and shear stresses as a function of material properties and applied normal and tangential friction loads are calculated.


Sign in / Sign up

Export Citation Format

Share Document