scholarly journals Finite element modelling of air cavities effect on GnP/epoxy nanocomposite thermal response and its full-field validation

2018 ◽  
Vol 188 ◽  
pp. 01014
Author(s):  
Asimina Manta ◽  
Matthieu Gresil ◽  
Constantinos Soutis

The manufacturing process of GnP/polymer nanocomposites exhibits important challenges regarding the material quality and how to reduce or eliminate fabrication induced defects. In this work, the effect of air cavities (voids) on the thermal response of nanocomposites is studied by means of finite element analysis on a multi-scale scheme. The proposed model is validated with experimental data by performing generic and full-field comparisons.

2021 ◽  
Vol 160 ◽  
pp. 106874
Author(s):  
Jamal Seyyed Monfared Zanjani ◽  
Pouya Yousefi Louyeh ◽  
Isa Emami Tabrizi ◽  
Abdulrahman Saeed Al-Nadhari ◽  
Mehmet Yildiz

2011 ◽  
Vol 52-54 ◽  
pp. 43-48 ◽  
Author(s):  
Al Emran Ismail ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Ruslizam Daud

This paper presents a non-linear numerical investigation of surface cracks in round bars under bending moment by using ANSYS finite element analysis (FEA). Due to the symmetrical analysis, only quarter finite element (FE) model was constructed and special attention was given at the crack tip of the cracks. The surface cracks were characterized by the dimensionless crack aspect ratio, a/b = 0.6, 0.8, 1.0 and 1.2, while the dimensionless relative crack depth, a/D = 0.1, 0.2 and 0.3. The square-root singularity of stresses and strains was modeled by shifting the mid-point nodes to the quarter-point locations close to the crack tip. The proposed model was validated with the existing model before any further analysis. The elastic-plastic analysis under remotely applied bending moment was assumed to follow the Ramberg-Osgood relation with n = 5 and 10. J values were determined for all positions along the crack front and then, the limit load was predicted using the J values obtained from FEA through the reference stress method.


Author(s):  
Ning Yu ◽  
Andreas A. Polycarpou ◽  
Jorge V. Hanchi

Oblique impact of a slider with a rotating disk in hard disk drives was analyzed using the finite element method. A three dimensional, thermomechanical, impact model was developed to study the mechanical and thermal response during the impact of a spherical slider corner with the disk. The model was validated by comparing finite element results with analytical solutions for homogeneous glass disk under simple conditions. Impact penetration, stress and incurred flash temperature were obtained for various normal impact velocities.


2014 ◽  
Vol 601 ◽  
pp. 167-170
Author(s):  
Lucian Bogdan ◽  
Cristian Sorin Nes ◽  
Angelica Enkelhardt ◽  
Nicolae Faur ◽  
Carmen Sticlaru ◽  
...  

This paper presents a finite element analysis in order to determinate the stress distribution in an proposed model of the artificial cruciate ligament of the knee joint during the gait cycle.


2010 ◽  
Vol 112 ◽  
pp. 49-62 ◽  
Author(s):  
Sébastien Mistou ◽  
Marina Fazzini ◽  
Moussa Karama

The purpose of this work is to study the Iosipescu shear test and more precisely its ability to characterize the shear modulus of a carbone/epoxy composite material. The parameters influencing this identification are the fibre orientation, the geometry of the notch and the boundary conditions. Initially these parameters were studied through the finite element analysis of the shear test. Then, the measurement of the shear strains was carried out by traditional methods of measurement (strain gauges) but also by optical methods. These optical methods: the digital image correlation and the electronic speckle pattern interferometry (ESPI); allow for various levels of loading, to reach a full-field measurement of the shear strain. This enabled us to study the strain distribution on the section between the two notches. The finite element model enabled us to study the parameters influencing the calculation of the shear modulus in comparison with strain gauges, image correlation and ESPI. This work makes it possible to conclude on optimal parameters for the Iosipescu test.


2005 ◽  
Vol 9 ◽  
pp. 153-162
Author(s):  
Yongping Feng ◽  
Junzhi Cui

The two-scale asymptotic expression and error estimations based on two-scale analysis (TSA) are presented for the solution of the increment of temperature and the displacement of a composite structure with small periodic configurations under coupled thermoelasticity condition in a perforated domain. The two-scale coupled relation between the increment of temperature and displacement is established.The multi-scale finite element algorithms corresponding to TSA are described and numerical results are presented.


2016 ◽  
Vol 834 ◽  
pp. 67-72
Author(s):  
H. Ayas ◽  
Hamid Hamli Benzahar ◽  
Mohamed Chabaat

The present study evaluates the von Mises stress distribution around the crack tip and stress Intensity Factor (SIF) under biaxial mixed modes during the propagation of a crack interacting with two nearby circular inclusions. The finite element method is used for determination of stress intensity factors by ABAQUS software. The stress field and the SIF are determined for different crack’s length .A brittle material such as a glass having an equivalent elasticity modulus and a Poisson rain this research work. Besides, the proposed model is a rectangular specimen with an edge crack subjected to tensile stresses according to the modes (I & II) of rupture .Obtained results are compared and agreed with those determined by other researchers.


2016 ◽  
Vol 681 ◽  
pp. 228-233
Author(s):  
R. Ismail ◽  
M. Tauviqirrahman ◽  
J. Jamari ◽  
D.J. Schipper

Although in terms of conservation wear is undesirable, however, running-in wear is encouraged rather than avoided. Running-in is rather complex and most of the studies related to the change in micro-geometry have been conducted statistically. The purpose of this study was to characterize the running-in of sliding contacts using finite element analysis based on measured micro-geometries. The developed model combines the finite element simulation, Archard’s wear equation and updated geometry to calculate the contact pressure distribution and wear depth. Results show that the proposed model is able to predict the running-in phase of sliding contact system.


Sign in / Sign up

Export Citation Format

Share Document