scholarly journals A fundamental study of parameter adjustable additive manufacturing process based on FDM process

2018 ◽  
Vol 189 ◽  
pp. 05001
Author(s):  
Qia Wan ◽  
Youjian Xu ◽  
Can Lu

In Fused deposition modeling (FDM) process, there has been a confliction between high productivity and high quality of products. The product resolution is proportional to the flow rate of heated material extrusion, which directly affects the build time. To reduce the build time with acceptable resolution, the idea of parameter adjustable printing process has been introduced. The controllable extruder was modified and two types of diameter changeable nozzle have been designed. This work realizes different resolution building based on the part geometry during FDM process, which can efficiently assure the quality of products and improve the productivity at the same time.

Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2021 ◽  
Vol 338 ◽  
pp. 01005
Author(s):  
Damian Dzienniak ◽  
Jan Pawlik

Additive manufacturing has been gaining popularity and availability year by year, which has resulted in its dynamic development. The most common 3D printing method as of today, FDM (Fused Deposition Modeling), owing to its peculiarity, does not always guarantee producing objects with low surface roughness. The authors of the present article have taken on the analysis of the impact of FDM printing on the roughness of the filament thus processed. They also investigate the relationship between the roughness of the unprocessed filament (made of polycaprolactam, that is, polyamide 6 or PA6) with admixtures of other materials (carbon fiber, glass fiber) and the surface quality of the manufactured object. The main subject of the analysis is the side surfaces of 3D prints, as it is their quality that is usually directly dependent on many factors connected with the process of the laying of the consecutive layers. The authors check step by step whether there exists a pronounced relationship between the roughness of the original filament material and the roughness of the obtained surface.


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


Author(s):  
Martin Hallmann ◽  
Benjamin Schleich ◽  
Sandro Wartzack

AbstractWhen using additive manufacturing processes, the choice of the numerous settings for the process and design parameters significantly influences the build and production time. To reduce the required build time, it is useful to adapt the parameters with the greatest influence. However, since the contribution of the individual parameters is not readily apparent, a sensible choice of process and design parameters can become a challenging task.Thus, the following article presents a method, that enables the product developer to determine the main contributors to the required build time of additively manufactured products. By using this sensitivity analysis method, the contributors of the individual parameters can be analyzed for a given parametrized CAD model with the help of an analysis-based build time estimation approach. The novelty of the contribution can be found in providing a method that allows studying both design and process parameters simultaneously, taking the machine to be used into account. The exemplary application of the presented method to a sample part manufactured by Fused Deposition Modeling demonstrates its benefits and applicability.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 466 ◽  
Author(s):  
Yiqiao Wang ◽  
Wolf-Dieter Müller ◽  
Adam Rumjahn ◽  
Andreas Schwitalla

In this review, we discuss the parameters of fused deposition modeling (FDM) technology used in finished parts made from polyether ether ketone (PEEK) and also the possibility of printing small PEEK parts. The published articles reporting on 3D printed PEEK implants were obtained using PubMed and search engines such as Google Scholar including references cited therein. The results indicate that although many have been experiments conducted on PEEK 3D printing, the consensus on a suitable printing parameter combination has not been reached and optimized parameters for printing worth pursuing. The printing of reproducible tiny-sized PEEK parts with high accuracy has proved to be possible in our experiments. Understanding the relationships among material properties, design parameters, and the ultimate performance of finished objects will be the basis for further improvement of the quality of 3D printed medical devices based on PEEK and to expand the polymers applications.


Author(s):  
Renkai Huang ◽  
Ning Dai ◽  
Dawei Li ◽  
Xiaosheng Cheng ◽  
Hao Liu ◽  
...  

Surface finish, especially the surface finish of functional features, and build time are two important concerns in additive manufacturing. A suitable part deposition orientation can enhance the surface quality of functional features and reduce the build time. This article proposes a novel method to obtain an optimum part deposition orientation for industrial-grade 3D printing based on fused deposition modeling process by considering two objective functions at a time, namely adaptive feature roughness (the weighted sum of all feature roughnesses) and build time. First, mesh segmentation and level classification of features are carried out. Then, models for evaluation of adaptive feature roughness and build time are established. Finally, a non-dominated sorting genetic algorithm-II based on Compute Unified Device Architecture is used to obtain the Pareto-optimal set. The feasible of the algorithm is evaluated on several examples. Results demonstrate that the proposed parallel algorithm obtains a limiting solution that enhances the surface quality of functional features significantly and reduces average running time by 94.8% compared with the traditional genetic algorithm.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989619 ◽  
Author(s):  
Zhiyong Li ◽  
Dawei Zhang ◽  
Liangchen Shao ◽  
Shanling Han

To improve the blockage and printing quality of the color mixing nozzle of fused deposition modeling color 3D printer, the feed parameters of fused deposition modeling color 3D printer were studied by vibration test. The acceleration sensor was fixed up the color mixing nozzle to analyze the vertical vibration of the nozzle. The vibration test of different feed speed, torque, and material were performed under the actual printing condition. Vertical vibration of the nozzle was characterized by an acceleration sensor. The comparative analysis of the actual testing results indicates that the optimum feed parameters are feed torque of triple torque extruder, feed speed of 20 mm/s, and feed material of ABS. Further analysis shows that higher feed torque can be used to improve the printing quality of the color mixing nozzle. The appropriate feed speed of the color 3D printer can not only reduce the accumulation of wire material at a lower speed but also reduce the blockage caused by too-high feed speed. It is proposed that the feed material with smaller flow behavior index and no phase transition in the melting process shows smaller vibration acceleration amplitude.


Author(s):  
Jagadish ◽  
Sumit Bhowmik

Fused deposition modeling (FDM) is one of the emerging rapid prototyping (RP) processes in additive manufacturing. FDM fabricates the quality prototype directly from the CAD data and is dependent on the various process parameters, hence optimization is essential. In the present chapter, process parameters of FDM process are analyzed using an integrated MCDM approach. The integrated MCDM approach consists of modified fuzzy with ANP methods. Experimentation is performed considering three process parameters, namely layer height, shell thickness, and fill density, and corresponding response parameters, namely ultimate tensile strength, dimensional accuracy, and manufacturing time are determined. Thereafter, optimization of FDM process parameters is done using proposed method. The result shows that exp.no-4 yields the optimal process parameters for FDM and provides optimal parameters as layer height of 0.08 mm, shell thickness of 2.0 mm and fill density of 100%. Also, optimal setting provides higher ultimate TS, good DA, and lesser MT as well as improving the performance and efficiency of FDM.


2017 ◽  
Vol 887 ◽  
pp. 128-132 ◽  
Author(s):  
Shaheryar Atta Khan ◽  
Bilal Ahmed Siddiqui ◽  
Muhammad Fahad ◽  
Maqsood Ahmed Khan

Additive manufacturing has stepped down from the world of Sci-Fi into reality. Since its conception in the 1980s the technology has come a long way. May variants of the technology are now available to the consumer. With the advent of custom built (open source) Fused Deposition Modeling based printing technology Fused Filament Fabrication (FFF), FDM/FFF has become the most used Additive Manufacturing technology. The effects of the different infill patterns of FDM/FFF on the mechanical properties of a specimen made from ABS are studied in this paper. It is shown that due to changes in internal structures, the tensile strength of the specimen changes. The study also investigate the effect of infill pattern on the build time of the specimen. Extensive testing yielded the optimal infill pattern for FDM/FFF. An open source Arduino based RepRap printer was used for the preparation of specimen and showed promising results for rapid prototyping of custom built parts to bear high loads. The study can help with the increase in the use of additive manufacturing for the manufacturing of mechanically functioning parts such as prosthetics


Sign in / Sign up

Export Citation Format

Share Document