Parallel non-dominated sorting genetic algorithm-II for optimal part deposition orientation in additive manufacturing based on functional features

Author(s):  
Renkai Huang ◽  
Ning Dai ◽  
Dawei Li ◽  
Xiaosheng Cheng ◽  
Hao Liu ◽  
...  

Surface finish, especially the surface finish of functional features, and build time are two important concerns in additive manufacturing. A suitable part deposition orientation can enhance the surface quality of functional features and reduce the build time. This article proposes a novel method to obtain an optimum part deposition orientation for industrial-grade 3D printing based on fused deposition modeling process by considering two objective functions at a time, namely adaptive feature roughness (the weighted sum of all feature roughnesses) and build time. First, mesh segmentation and level classification of features are carried out. Then, models for evaluation of adaptive feature roughness and build time are established. Finally, a non-dominated sorting genetic algorithm-II based on Compute Unified Device Architecture is used to obtain the Pareto-optimal set. The feasible of the algorithm is evaluated on several examples. Results demonstrate that the proposed parallel algorithm obtains a limiting solution that enhances the surface quality of functional features significantly and reduces average running time by 94.8% compared with the traditional genetic algorithm.

Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2021 ◽  
Vol 338 ◽  
pp. 01005
Author(s):  
Damian Dzienniak ◽  
Jan Pawlik

Additive manufacturing has been gaining popularity and availability year by year, which has resulted in its dynamic development. The most common 3D printing method as of today, FDM (Fused Deposition Modeling), owing to its peculiarity, does not always guarantee producing objects with low surface roughness. The authors of the present article have taken on the analysis of the impact of FDM printing on the roughness of the filament thus processed. They also investigate the relationship between the roughness of the unprocessed filament (made of polycaprolactam, that is, polyamide 6 or PA6) with admixtures of other materials (carbon fiber, glass fiber) and the surface quality of the manufactured object. The main subject of the analysis is the side surfaces of 3D prints, as it is their quality that is usually directly dependent on many factors connected with the process of the laying of the consecutive layers. The authors check step by step whether there exists a pronounced relationship between the roughness of the original filament material and the roughness of the obtained surface.


2021 ◽  
Vol 27 (11) ◽  
pp. 1-12
Author(s):  
Giovanni Gómez-Gras ◽  
Marco A. Pérez ◽  
Jorge Fábregas-Moreno ◽  
Guillermo Reyes-Pozo

Purpose This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies. Design/methodology/approach The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations. Findings The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment. Originality/value This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.


2018 ◽  
Vol 189 ◽  
pp. 05001
Author(s):  
Qia Wan ◽  
Youjian Xu ◽  
Can Lu

In Fused deposition modeling (FDM) process, there has been a confliction between high productivity and high quality of products. The product resolution is proportional to the flow rate of heated material extrusion, which directly affects the build time. To reduce the build time with acceptable resolution, the idea of parameter adjustable printing process has been introduced. The controllable extruder was modified and two types of diameter changeable nozzle have been designed. This work realizes different resolution building based on the part geometry during FDM process, which can efficiently assure the quality of products and improve the productivity at the same time.


2017 ◽  
Vol 887 ◽  
pp. 128-132 ◽  
Author(s):  
Shaheryar Atta Khan ◽  
Bilal Ahmed Siddiqui ◽  
Muhammad Fahad ◽  
Maqsood Ahmed Khan

Additive manufacturing has stepped down from the world of Sci-Fi into reality. Since its conception in the 1980s the technology has come a long way. May variants of the technology are now available to the consumer. With the advent of custom built (open source) Fused Deposition Modeling based printing technology Fused Filament Fabrication (FFF), FDM/FFF has become the most used Additive Manufacturing technology. The effects of the different infill patterns of FDM/FFF on the mechanical properties of a specimen made from ABS are studied in this paper. It is shown that due to changes in internal structures, the tensile strength of the specimen changes. The study also investigate the effect of infill pattern on the build time of the specimen. Extensive testing yielded the optimal infill pattern for FDM/FFF. An open source Arduino based RepRap printer was used for the preparation of specimen and showed promising results for rapid prototyping of custom built parts to bear high loads. The study can help with the increase in the use of additive manufacturing for the manufacturing of mechanically functioning parts such as prosthetics


2020 ◽  
Vol 14 (1) ◽  
pp. 6417-6429 ◽  
Author(s):  
Nur Nabilah Mohd Mustafa ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. Akhmal Ngadiman ◽  
A. Ma'aram ◽  
K. Zakaria

Rapid vacuum casting has been proven to be a successful method in producing high-quality parts in small series. However, a challenge lies in the selection of proper Additive Manufacturing (AM) technologies for the development of a master pattern for the vacuum casting process. Each AM technologies differ from one another in terms of dimensional accuracy, surface finish, cost and lead times. The aim of this study is to investigate the performance of casting mating parts based on different additive manufacturing patterns for small batch. Three types of AM-based patterns: Fused Deposition Modeling (FDM), Stereolithography (SLA) and Multi-Jet Fusion (MJF) were compared. The Taguchi method, Signal to Noise ratio (S/N), Analysis of Variance (ANOVA) and T-test were conducted in determining the optimized parameters. From the findings, curing time is shown to be a significant parameter for dimensional accuracy and surface finish. Dimensional deviation varies in different directions of parts. For surface finish, there was only a slight change from the master pattern whereas the surface roughness of casting parts decreased within the range 0.23% to 2.85%. Tolerance grades for the selected dimensions of the parts were in the permissible range, based on ISO286-1:2010. When using distinct kinds of AM patterns to create replacement components, design tolerance is needed. It was suggested to select AM technology similar to that had been used for the original components.  Battery cover was selected as a case study to represent the mating application parts.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana Pilar Valerga Puerta ◽  
J.D. Lopez-Castro ◽  
Adrián Ojeda López ◽  
Severo Raúl Fernández Vidal

Purpose Fused filament fabrication or fused deposition modeling (FFF/FDM) has as one of its main restrictions the surface quality intrinsic to the process, especially linked to the layer thickness used during manufacture. The purpose of this paper is to study the possibility of improving the surface quality of polylactic acid (PLA) parts manufactured by FFF using the shot blasting technique. Design/methodology/approach The influence of corundum blasting on 0.2 mm layer thickness FDM PLA parts treated with two sizes of abrasive, different exposure times and different incidence pressures. Findings As a result, improvements of almost 80% were obtained in the surface roughness of the pieces with high exposure times, and more than 50% in just 20 s. Originality/value This technique is cheap, versatile and adaptable to different part sizes and geometries. Furthermore, it is a fast and environmentally friendly technique compared to conventional machining or vapor smoothing. Despite this, no previous studies have been carried out to improve the quality of this technology.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1382 ◽  
Author(s):  
Mercedes Pérez ◽  
Gustavo Medina-Sánchez ◽  
Alberto García-Collado ◽  
Munish Gupta ◽  
Diego Carou

The present paper shows an experimental study on additive manufacturing for obtaining samples of polylactic acid (PLA). The process used for manufacturing these samples was fused deposition modeling (FDM). Little attention to the surface quality obtained in additive manufacturing processes has been paid by the research community. So, this paper aims at filling this gap. The goal of the study is the recognition of critical factors in FDM processes for reducing surface roughness. Two different types of experiments were carried out to analyze five printing parameters. The results were analyzed by means of Analysis of Variance, graphical methods, and non-parametric tests using Spearman’s ρ and Kendall’s τ correlation coefficients. The results showed how layer height and wall thickness are the most important factors for controlling surface roughness, while printing path, printing speed, and temperature showed no clear influence on surface roughness.


Author(s):  
Hasti Eiliat ◽  
Ruth Jill Urbanic

Fused Deposition Modeling (FDM) is an additive fabrication process that builds a part from extruded filaments of a melted thermoplastic. Typically, the parts are built using a ‘solid’ (complete fill) or ‘shell’ (3–4 mm external boundary with a loose internal weave) strategy. The introduction of parametric internal structures to support the required tensile or compressive loads provides an intermediate solution to the standard build options, and reduces the material usage while reinforcing the part as required. The internal structures can have a hexagonal, pyramidal, or orthogonal configuration. Because of the configuration variation, the internal structure form arrangement and geometric structure will influence the optimal build orientation. This will have an effect on the productivity or build time, mechanical properties such as strength, surface finish, materials usage and the total build cost. This paper presents a model to optimize the orientation of a part for FDM fabrication while considering these various factors. The CAD part model (in STL format) is an input to the system. A genetic algorithm is used to obtain optimum orientation of the parts for FDM. The objective function for optimization is considered a weighted average of the performance measures such as build time, part quality, material usage, surface finish, interior geometry, strength characteristics, and related parameters. The merits of the approach will be demonstrated using models with varying levels of complexity. The final model tested consists of a human tibia.


2017 ◽  
Vol 15 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Gianluca Cicala ◽  
Alberta Latteri ◽  
Barbara Del Curto ◽  
Alessio Lo Russo ◽  
Giuseppe Recca ◽  
...  

Background Among additive manufacturing techniques, the filament-based technique involves what is referred to as fused deposition modeling (FDM). FDM materials are currently limited to a selected number of polymers. The present study focused on investigating the potential of using high-end engineering polymers in FDM. In addition, a critical review of the materials available on the market compared with those studied here was completed. Methods Different engineering thermoplastics, ranging from industrial grade polycarbonates to novel polyetheretherketones (PEEKs), were processed by FDM. Prior to this, for innovative filaments based on PEEK, extrusion processing was carried out. Mechanical properties (i.e., tensile and flexural) were investigated for each extruded material. An industrial-type FDM machine (Stratasys Fortus® 400 mc) was used to fully characterize the effect of printing parameters on the mechanical properties of polycarbonate. The obtained properties were compared with samples obtained by injection molding. Finally, FDM samples made of PEEK were also characterized and compared with those obtained by injection molding. Results The effect of raster to raster air gap and raster angle on tensile and flexural properties of printed PC was evidenced; the potential of PEEK filaments, as novel FDM material, was highlighted in comparison to state of the art materials. Conclusions Comparison with injection molded parts allowed to better understand FDM potential for functional applications. The study discussed pros and cons of the different materials. Finally, the development of novel PEEK filaments achieved important results offering a novel solution to the market when high mechanical and thermal properties are required.


Sign in / Sign up

Export Citation Format

Share Document