scholarly journals The effect of ethoxylate nonionic surfactants on phase inversion temperature and salinity: an alternative approach for vegetable oil recovery from spent bleaching earth

2018 ◽  
Vol 192 ◽  
pp. 03042
Author(s):  
Gitsada Panumonwatee ◽  
Ampira Charoensaeng ◽  
Noulkamol Arpornpong

An accurate determination of the hydrophilic-lipophilic nature of surfactants plays an important role in guiding microemulsion formation. The objective of this study is to determine the effect of ethoxylate numbers (EONs) (3, 5, and 7 moles) of nonionic surfactants on a phase inversion temperature (PIT) and optimum salinity based on the equivalent alkane carbon numbers (ACNs) of vegetable oils. Three vegetable oils, soybean oil, crude rice bran oil and crude palm oil, were selected for use as a surrogate oil to represent the residual oils found in spent bleaching earth. In this study, the hydrophilic-lipophilic deviation (HLD) was used to predict the optimum salinity (0-20 %wt.) at various temperatures (25-55°C). The results showed that the ACNs of crude rice bran oil, crude palm oil, and soybean oil were 15.41±0.35, 13.71±0.41, and 17.60±0.28, respectively. In comparison, these predictions with the experimental results, the data showed slight deviations in the optimum salinity with the specific temperature. Finally, the ACN and the surfactant characteristics obtained in this study were combined with the HLD equation and used to validate its practically and utility for guiding the optimum microemulsion formulation.

2013 ◽  
Vol 781-784 ◽  
pp. 1806-1810
Author(s):  
Hong Xia Li ◽  
Min Zhi ◽  
Xin Lu ◽  
Jun Jie Zhang ◽  
Mei Ting Li

Since rice bran oil (RBO) is well-known by consumer and more expensive than other oils, some RBO is adulterated with other cheap oils, such as cottonseed oil (CO), palm oil (PO), sunflower oil (SFO) and soybean oil (SO). The types and content of FAs in RBO changes great after adulterated, this will seriously affect the quality of the rice and the people health. In this study, GC was used to detect the change of fatty acids (FAs) after adulterated with those inferior oils. The analysis will provide a reference for the RBO adulteration problem.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2795
Author(s):  
Thammaporn Junsai ◽  
Saranya Poapolathep ◽  
Samak Sutjarit ◽  
Mario Giorgi ◽  
Zhaowei Zhang ◽  
...  

The prevalence of mycotoxins is often increased by the climatic conditions prevailing in tropical regions. Reports have revealed the contamination of mycotoxins in some types of vegetable oil. However, vegetable oil is one of the essential ingredients used in food preparation. Thus, this study determined the occurrence of multi-mycotoxins in six types of vegetable oils commercially available in Thailand to assess the consumer health risk. In total, 300 vegetable oil samples (olive oil, palm oil, soybean oil, corn oil, sunflower oil, and rice bran oil) collected from various markets in Thailand were analyzed for the presence of nine mycotoxins, namely, aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), beauvericin (BEA), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and fumonisin B2 (FB2) using a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based procedure and a triple quadrupole mass spectrometer equipped with an electrospray ionization source. The incidences of mycotoxin contamination varied among the different types of oil samples. AFB1, AFB2, ZEA, FB1, and FB2 were most frequently found in contaminated samples. AFB2, BEA, ZEA, FB1, and FB2 contaminated olive oil samples, whereas AFB1, AFB2, AFG2, and OTA contaminated palm oil samples. AFB1, AFB2, and ZEA were found in soybean oils, whereas ZEA, FB1, and FB2 contaminated corn oil samples. AFB1 and AFG1 contaminated sunflower oil samples, whereas AFB1, AFB2, AFG1, and OTA were detected in rice bran oil samples. However, the contamination levels of the analyzed mycotoxins were below the regulatory limits.


Food Research ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 1025-1029
Author(s):  
Y.P. Sari ◽  
S. Raharjo ◽  
U. Santoso ◽  
Supriyadi

Rice bran oil (RBO) contains naturally occurring antioxidants such as carotenoids, tocopherol, and γ-oryzanol. The aim of this research was to formulate and evaluate the characteristics of nanoemulsion which was prepared using RBO containing naturally occurring antioxidants. The RBO-in-water nanoemulsion was prepared by the emulsion phase inversion method. The oil phase of the nanoemulsion was prepared by either virgin coconut oil (VCO) or palm oil (PO) combined with RBO with the ratio of 5:5; 4:6, 3:7, 2:8 and 0:10. Tween 80 was used as a surfactant. The surfactant to oil ratios was predetermined at 2.5:1.0 and 3.0:1.0. The aqueous phase (80% w/w) was titrated into an organic phase that consisted of Tween 80 and oil phase (approximately 20% w/w). Droplet size, zeta-potential and polydispersity index of the nanoemulsion were used as the main parameters. The results showed that the smallest droplet (<100 nm) of the nanoemulsion was obtained when the ratio of VCO: RBO at 3:7 and the ratio of PO: RBO at 4:6 with the surfactant to oil ratio (SOR) was 2.5. Nanoemulsion with a relatively small polydispersity index of 0.3 was achieved when the ratio of PO: RBO was 3:7 and SOR at 3. All of the freshly prepared RBO containing nanoemulsion have good stability with zetapotential values of < -30 mV. Nanoemulsions were stable against centrifugation at 2300 rpm for 15 mins, but they were not stable against heating at 105°C for 5 hrs. The RBO-inwater nanoemulsion could be successfully prepared by phase inversion method, by combining RBO with either VCO or PO at different ratios.


2019 ◽  
Vol 18 (4) ◽  
pp. 427-438
Author(s):  
M. Abbas Ali ◽  
◽  
M. Azizul Islam ◽  
Noor Hidayu Othman ◽  
Ahmadilfitri Md Noor ◽  
...  

2015 ◽  
Vol 830-831 ◽  
pp. 160-163 ◽  
Author(s):  
K.M. Pranesh Rao ◽  
K. Narayan Prabhu

Quench hardening is a process where an alloy is heated to solutionizing temperature and held for a definite period, and then rapidly cooled in a quenching medium. Selection of quenchant that can yield desired properties is essential as it governs heat extraction process during quenching. In the present work, the cooling performance of vegetable oil and mineral-vegetable oil blend quench media was assessed. The vegetable oils used in this work were olive oil, canola oil and rice bran oil. The mineral-vegetable oil blends were prepared by blending 10 and 20 vol. % of rice bran and canola oil in mineral oil. Inconel probe of 12.5mm diameter and 60mm height, instrumented with thermocouples were used to characterize quenchants. The probe was heated to 850°C and quenched in the oil medium. The cooling curves at different locations in the probe were used to study wetting kinematics. Inverse modelling technique was used to estimate spatially dependent metal-quenchant interfacial heat flux. It was found that the vegetable oils exhibited very short vapour blanket stage compared to mineral oil and blends. Faster wetting kinematics obtained with blends resulted in uniform heat transfer compared to that of mineral oil. The temperature distribution in the probe quenched in vegetable oils and blends was more uniform compared to that in mineral oil. It is expected that the parts quenched in vegetable oils and blends would lead to better hardness distribution compared to mineral oils.


Sign in / Sign up

Export Citation Format

Share Document