scholarly journals Research of working capacity of grinding wheels

2018 ◽  
Vol 224 ◽  
pp. 01005
Author(s):  
Tatyana N. Ivanova

The processing of materials by cutting with abrasive tool is carried out by means of thousands of grains bonded together as a single whole. The quality of abrasive tool is defined by cutting properties of abrasive grains and depends on features of spreading of temperature field in time and in abrasive grain volume. Grains are exposed to heating and cooling during work. It leads to undesired effects such as decrease of durability of grain retention in the binder, hardness, intensification of diffusion and oxidation processes between the binder and grain, the occurrence of considerable temperature stresses in the grain itself. Obtained equation which allows calculation of temperature field of grain for one rotation of grinding wheel shows that the temperature of the wheel depends on grinding modes and thermophysical properties of abrasive material. Recommendations for working capacity of grinding wheels in each operation mode and with a transition from one mode to another are given. As a result of research different dependencies were determined. They include dependencies governing the extent of influence of granularity, difference in height and concentration of grains, geometry parameters of detail to be machined and grinding wheel on machining modes and the thickness of layer cutoff by one grain.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Xining Zhang ◽  
Xu Liu ◽  
Huan Zhao

Grinding is a vital method in machining techniques and an effective way to process materials such as hardened steels and silicon wafers. However, as the running time increases, the unbalance of grinding wheels produce a severe vibration and noise of grinding machines because of the uneven shedding of abrasive particles and the uneven adsorption of coolant, which has a severe and direct impact on the accuracy and quality of parts. Online balancing is an important and necessary technique to reduce the unbalance causing by these factors and adjust the time-varying balance condition of the grinding wheel. A new active online balancing method using liquid injection and free dripping is proposed in this paper. The proposed online balancing method possesses a continuous balancing ability and the problem of losing balancing ability for the active online balancing method using liquid injection is solved effectively because some chambers are full of liquid. The residual liquid contained in the balancing chambers is utilized as a compensation mass for reducing rotor unbalance, where the rotor phase is proposed herein as a target for determining the machine unbalance. A new balancing device with a controllable injection and free dripping structure is successfully designed. The relationship between the mass of liquid in the balancing chamber and the centrifugal force produced by liquid is identified. The performance of the proposed method is verified by the balancing experiments and the results of these experiments show that the vibration of unbalance response is reduced by 87.3% at 2700 r/min.


2020 ◽  
Vol 14 (2) ◽  
pp. 117-124
Author(s):  
Bayu Rahmat Saputro ◽  
Amin Suhadi

Abstract A research was conducted on the grinding process of ferrite magnet with Strontium ferrite type (SrO.6 (Fe2O3)) using electroplated single layer grinding wheels. Many cracks have been found on work pieces during this work, which is coming from grinding processes. Research is conducted starting from chemical composition test and the effect of the shape and size of the abrasive grain of grinding wheels to the quality of grinding process results by measuring crack ratio of the work piece.  In this experiment, 3 (three) model design of grinding wheels with three different size and shape of abrasive grains are made. All of processing parameters are set at the same value as ordinary process.  The experimental results shown that 3rd model have the best results from the outputs number and also the lowest reject crack ratio compared to 1st and 2nd models. This is because the 3rd model has blocky shape which its distribution structure is denser and more uniform compared to the irregular shape, so that continuous grinding on hard and brittle work pieces is more stable and suitable


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 115 ◽  
Author(s):  
Wojciech Kapłonek ◽  
Krzysztof Nadolny ◽  
Krzysztof Rokosz ◽  
Jocelyne Marciano ◽  
Mozammel Mia ◽  
...  

The development of modern jet engines would not be possible without dynamically developed nickel–chromium-based superalloys, such as INCONEL® The effective abrasive machining of above materials brings with it many problems and challenges, such as intensive clogging of the grinding wheel active surface (GWAS). This extremely unfavorable effect causes a reduction in the cutting ability of the abrasive tool as well as increase to grinding forces and friction in the whole process. The authors of this work demonstrate that introduction of a synthetic organosilicon polymer-based impregnating substance to the GWAS can significantly improve the effects of carrying out the abrasive process of hard-to-cut materials. Experimental studies were carried out on a set of a silicon-treated small-sized sol–gel alumina 1-35×10×10-SG/F46G10VTO grinding wheels. The set contained abrasive tools after the internal cylindrical grinding process of INCONEL® alloy 600 rings and reference abrasive tools. The condition of the GWAS after the impregnation process was studied, including imaging and measurements of its microgeometry using confocal laser scanning microscopy (CLSM), microanalysis of its elemental distribution using energy dispersive X-ray fluorescence (EDXRF), and the influence of impregnation process on the grinding temperature using infrared thermography (IRT). The obtained results confirmed the correctness of introduction of the impregnating substance into the grinding wheel structure, and it was possible to obtain an abrasive tool with a recommended characteristic. The main favorable features of treated grinding wheel concerning the reduction of adhesion between the GWAS and grinding process products (limitation of the clogging phenomenon) as well as reduction of friction in the grinding process, which has a positive effect on the thermal conditions in the grinding zone.


2009 ◽  
Vol 76-78 ◽  
pp. 163-168 ◽  
Author(s):  
Taghi Tawakoli ◽  
Abdolreza Rasifard ◽  
Alireza Vesali

The efficiency of using of CBN grinding wheels highly depends on the dressing process as well as on the coolant lubricant used. The Institute of Grinding and Precision Technology (KSF) investigated the performance of vitrified CBN grinding wheels -being dressed using different parameters- while using two different grinding oils and two different water-miscible coolant lubricants. The obtained results show that the performance of the vitrified CBN grinding wheels regarding the quality of the workpiece surface, the grinding forces as well as the wear of the grinding wheel, highly depend on the dressing conditions and the type of the coolant lubricant used. Compared to the water-miscible coolant lubricants, the grinding oils show better results.


2009 ◽  
Vol 76-78 ◽  
pp. 137-142 ◽  
Author(s):  
Takazo Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

Usually, the contact stiffness between a grinding wheel and a workpiece has been measured in a stationary state. So, in this study, the contact stiffness under the grinding operation is measured under different table feed rate of the workpiece. From this result, it is known that, while the contact stiffness in the stationary state increases with the increase of the contact force, the contact stiffness under the grinding operation decreases with the increase of the normal grinding force relating the table feed rate. In this paper, since the number of contacting abrasive grain with workpiece is constant irrespective of the table feed rate, and the residual stock removal of workpiece is varied by the table feed rate, it is clarified that the contact stiffness under the grinding operation differs from the contact stiffness measured by the stationary state.


Author(s):  
Taghi Tawakoli ◽  
Abdolreza Rasifard ◽  
Alireza Vesali

The efficiency of the grinding process highly depends on the coolant lubricant used. In grinding with CBN grinding wheels grinding oils are used increasingly. In the last decade new grinding oils based on different oil types are brought into the market, whose effect on the CBN grinding wheels performance until now not sufficiently been investigated. The Institute of Grinding and Precision Technology (KSF) investigated the influence of four different grinding oils on the performance of vitrified CBN grinding while grinding of 100Cr6 (M.-No. 1.3505), which is a heat-treatable steel with a very good grindability, and Nimonic A80, which is a difficult to grind heat-resistance superalloy. The obtained results show that the performance of the vitrified CBN grinding wheels—while using grinding oil as coolant lubricant—regarding the quality of the work piece surface, the grinding forces as well as the wear of the grinding wheel, highly depend on the viscosity of the grinding oil. Moreover, the results show that the surface quality and the grinding forces while using different grinding oils depend significantly on the work piece material.


10.14311/1598 ◽  
2012 ◽  
Vol 52 (4) ◽  
Author(s):  
Ondrej Jusko

This paper focuses on the influence of various types of abrasive grains on cutting properties during the grinding process for bearing steel. In this experiment, not only conventional super-hard abrasive materials but also a new type of abrasive material were employed in grinding wheels. The measurement results were compared, and an evaluation was made of the cutting properties of the new abrasive material. The options were then evaluated for their practical applicability. The measurement results indicated that a grinding wheel with Abral and SG grains is the most suitable for grinding hardened bearing steel in order to achieve the best roughness and geometrical accuracy.


2018 ◽  
Vol 224 ◽  
pp. 01003
Author(s):  
Vladimir Bogutsky ◽  
Yurij Novoselov ◽  
Leonid Shron

The article shows that during the grinding of complex profile blades of metal cutting tools from tool steels, unfavorable thermodynamic conditions are created in the cutting zone and, as a result, grinding burns and cracks occur on the surface of the polished workpiece. One of the methods of controlling the temperature in the cutting zone at the final grinding operations is the use of grinding wheels with a discontinuous surface. The method of calculating the profile of the discontinuous surface of the grinding wheel presented in the article makes it possible to determine its geometric parameters taking into account the wear resistance of the grinding wheel and the heat stress of the process of treatment. The results of the verification of the proposed technique in the production conditions are given which showed that the treatment of the teeth of the broaches with a grinding wheel with a discontinuous profile, in comparison with the machining of broaches according to the traditional technology, provides a higher quality of blade surfaces, while the process productivity, compared with the factory technology, increased by 20...26%.


Author(s):  
Aleksandr A. Dyakonov ◽  
Dmitrii V. Ardashev

The article presents the results of calculating the blunting area of abrasive grains of grinding wheels, determined in accordance with the previously developed model. The mathematic model of the size of the blunting area of an abrasive grain considers the main mechanisms of its wear—mechanical and physicochemical. These mechanisms are taken into account in the model. For the first time, the kinetic theory of strength was used for determining the mechanical wear of abrasive grain. The mass transfer theory was used to study the physicochemical wear: coefficients of chemical affinity with the abrasive material are experimentally defined for the assortment of workpiece materials. The developed mathematic model is a multiple-factor one and this will allow to predict the size of wear of the abrasive wheel for different technological conditions. Also, the article presents the experimental method for determining the blunting area of abrasive grains of grinding wheels, which allows making a direct measurement of wear parameters of grinding wheels. The main parameter of grinding wheel wear is the length of the blunting area of the grain, which was measured out in the direction of the cutting speed vector. The grinding wheels of different graininess were studied—F60 and F46. The grinding wheel working surface was studied by numerical photos and microscope. The results of these experiments have confirmed the adequacy of the design model.


Author(s):  
LM Huang ◽  
HH Ding ◽  
SY Zhang ◽  
K Zhou ◽  
J Guo ◽  
...  

The rail grinding process generates a large amount of heat, which could lead to heat damage on the ground rails. But, the whole temperature field of rail ground by the grinding train has not been explored in detail. In the present study, finite element models of a rail and grinding wheel were established to simulate the rail grinding process. The temperature field and the thermo-mechanical coupling stress during rail grinding, and the residual stress after grinding were studied. Furthermore, through simplifying grinding wheels into heat sources, the temperature field of rail ground by a whole grinding train was investigated as well. The results indicated that the grinding temperature and the residual stress increased with the grinding depth and rotational speed, but decreased with the feed speed and radius of rail head. The thermo-mechanical coupling stress increased with the radius of rail head and grinding depth, and decreased with the rotational speed and feed speed. When ground by the whole grinding train, the increase in the number of grinding wheels at the same grinding angle and adjacent angles could lead to a rise in temperature on the rail surface. The speeds of grinding train and the rail head radius also have an influence on the temperature. The optimal feed speed of the grinding train should be below 12 km/h for R300, 16 km/h for R80, and 18 km/h for R13. The results could be used to optimize the grinding parameters and grinding pattern in the field.


Sign in / Sign up

Export Citation Format

Share Document