scholarly journals Sustainable cementitious materials: The effect of fly ash percentage as a part replacement of portland cement composite (PCC) and curing temperature on the early age strength of fly ash concrete

2019 ◽  
Vol 258 ◽  
pp. 01001
Author(s):  
Gidion Turuallo ◽  
Harun Mallisa

This research aims to determine the effect of fly ash percentage as a part replacement of Portland cement and curing temperatures to the early age strength of concrete. The percentages of fly ash used were 0, 10 and 15% by cement weight. The cured temperatures were 25, 30 dan 50°C. The concrete specimens were cubes of 150 x 150 x 150 mm3. The cubes, which were cured at 25°C, placed in water tank, while those cured at 30 and 50°C cured in oven until 7 days and then continued in water. The testing was conducted at ages 3, 7, 14 dan 28 days. The results showed that at early ages, the strength of concrete without fly ash cured at 25°C were higher than that of fly ash concrete. The higher level replacement of cement with fly ash, the lower strength of concrete obtained. The higher the curing temperature at earlier age resulted the higher the strength of concrete. The strength of concretes with 10% of fly ash cured at 25, 30 and 50°C at age three days were 15.111, 15.481 and 16.296 MPa respectively. Conversely, the strength of concrete that of cured at higher temperatures at ages 28 days, were lower than that of concretes cured at lower temperature. The results of this research also showed that fly ash could improve the workability of concrete.

2016 ◽  
Vol 711 ◽  
pp. 343-350
Author(s):  
Atef Badr ◽  
Socrates Ioannou ◽  
Haidar Al Maroof

This paper presents the results of the second phase of an experimental research, which was carried out to investigate the freeze-thaw durability of fly ash (FA) concrete subjected to slow freeze-thaw cycles. The results of the first phase showed that FA had a significant detrimental effect on the freeze-thaw durability concrete. The lower resistance to freezing condition was attributed to the low early strength of FA concrete, at early ages, compared to Portland cement concrete. Therefore, rapid hardening Portland cement (RHPC) and setting accelerator (SA) were introduced, in the second phase, in a bid to modify the early age properties of FA concrete and, hence, enhance its freeze-thaw durability. The weight loss and residual strength of the specimens were assessed after specific number of freeze-thaw cycles. The results showed that the use of rapid hardening Portland cement (RHPC) and/or setting accelerator (SA) enabled earlier demoulding to take place and enhanced the early age strength of FA concrete. However, this did not necessarily improve the freeze-thaw durability of FA concrete. The effect RHPC and SA on the deterioration and residual strength of concrete containing fly ash was indifferent. Therefore, it is suggested that further research is needed to confirm the effect of RHPC and SA on the freeze-thaw durability of fly ash concrete.


Author(s):  
Karthik H. Obla ◽  
Rongjin Hong ◽  
Colin L. Lobo ◽  
Haejin Kim

Minimum cementitious contents are commonly specified in project specifications. The primary focus of this study was to examine the influence of the cementitious content on concrete performance at specific water-to-cementitious materials ratios. The experimental variables included water-to-cementitious materials ratios ranging from 0.40 to 0.55, mixtures containing portland cement only, and mixtures containing 40% slag cement or 25% fly ash. Concrete performance was evaluated through laboratory tests on workability, strength, and durability. The results showed that at a given water-to-cementitious ratio a higher cementitious content results in higher paste volumes and poorer concrete performance. On the basis of these results the value of maintaining minimum cementitious content requirements in project specifications is questioned.


2021 ◽  
Vol 03 (04) ◽  
pp. 1-1
Author(s):  
Pal S. Mangat ◽  
◽  
Shahriar Abubakri ◽  
Konstantinos Grigoriadis ◽  
Vincenzo Starinieri ◽  
...  

Microwave curing of repair patches provides an energy efficient technique for rapid concrete repair. It has serious economic potential due to time and energy saving especially for repairs in cold weather which can cause work stoppages. However, the high temperatures resulting from the combination of microwave exposure and accelerated hydration of cementitious repair materials need to be investigated to prevent potential durability problems in concrete patch repairs. This paper investigates the time and magnitude of the peak hydration temperature during microwave curing (MC) of six cement based concrete repair materials and a CEM II mortar. Repair material specimens were microwave cured to a surface temperature of 40-45 °C while their internal and surface temperatures were monitored. Their internal temperature was further monitored up to 24 hours in order to determine the effect of microwave curing on the heat of hydration. The results show that a short period of early age microwave curing increases the hydration temperature and brings forward the peak heat of hydration time relative to the control specimens which are continuously exposed to ambient conditions (20 °C, 60% RH). The peak heat of hydration of normal density, rapid hardening Portland cement based repair materials with either pfa or polymer addition almost merges with the end of microwave curing period. Similarly, lightweight polymer modified repair materials also develop heat of hydration rapidly which almost merges with the end of microwave curing period. The peak heat of hydration of normal density ordinary Portland cement based repair materials, with and without polymer addition, occurs during the post microwave curing period. The sum of the microwave curing and heat of hydration temperatures can easily exceed the limit of about 70 °C in some materials at very early age, which can cause durability problems.


Alkali-activated concrete (AAC) is mounting as a feasible alternative to OPC assimilated to reduce greenhouse gas emanated during the production of OPC. Use of pozzolana results in gel over-strengthening and fabricate less quantity of Ca(OH)2 which provide confrontation to concrete against hostile environment. (AAC) is potential due to inheriting the property of disbursing CO2 instantly from the composition. Contrastingly an option to ordinary Portland cement (OPC), keeping this fact in mind the goal to evacuate CO2 emits and beneficiate industrial by-products into building material have been taken into consideration. Production of alkali-activated cement emanates CO2 nearly 50-80% less than OPC. This paper is the general assessment of current report on the fresh and hardened properties of alkali-activated fly ash (AAF), alkali-activated slag (AAS), and alkali activated slag and fly ash (AASF) concrete. In the recent epoch, there has been a progression to blend slag with fly ash to fabricate ambient cured alkali-activated concrete. Along with that the factors like environmental friendliness, advanced studies and investigation are also mandatorily required on the alkali activated slag and fly ash concrete. In this way, the slag to fly ash proportion impacts the essential properties and practical design of AAC. This discusses and reports the issue in an intensive manner in the following sections. This will entail providing a good considerate of the following virtues like workability, compressive strength, tensile strength, durability issues, ambient and elevated-temperature curing of AAC which will improve further investigation to elaborate the correct test methods and to commercialize it.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985194 ◽  
Author(s):  
Jianping Zhu ◽  
Genshen Li ◽  
Ruijie Xia ◽  
Huanhuan Hou ◽  
Haibin Yin ◽  
...  

Nanomaterial, as a new emerging material in the field of civil engineering, has been widely utilized to enhance the mechanical properties of cementitious material. Nano-SnO2 has presented high hardness characteristics, but there is little study of the application of nano-SnO2 in the cementitious materials. This study mainly investigated the hydration characteristics and strength development of Portland cement paste incorporating nano-SnO2 powders with 0%, 0.08%, and 0.20% dosage. It was found that the early-age compressive strength of cement paste could be greatly improved when nano-SnO2 was incorporated with 0.08% dosage. The hydration process and microstructure were then measured by hydraulic test machine, calorimeter, nanoindentation, X-ray diffraction, scanning electron microscope, and mercury intrusion porosimetry. It was found that the cement hydration process was promoted by the addition of nano-SnO2, and the total amount of heat released from cement hydration is also increased. In addition, the addition of nano-SnO2 can promote the generations of high density C-S-H and reduce the generations of low density C-S-H indicating the nucleation effect of nano-SnO2 in the crystal growth process. The porosity and probable pore diameter of cement paste with 0.08% nano-SnO2 were decreased, and the scanning electron microscopic results also show that the cement paste with 0.08% nano-SnO2 promotes the densification of cement microstructure, which are consistent with the strength performance.


Author(s):  
W. Micah Hale ◽  
Thomas D. Bush ◽  
Bruce W. Russell ◽  
Seamus F. Freyne

Often, concrete is not mixed or placed under ideal conditions. Particularly in the winter or the summer months, the temperature of fresh concrete is quite different from that of concrete mixed under laboratory conditions. This paper examines the influence of supplementary cementitious materials on the strength development (and other hardened properties) of concrete subjected to different curing regimens. The supplementary cementitious materials used in the research program were ground granulated blast furnace slag (GGBFS), fly ash, and a combination of both materials. The three curing regimens used were hot weather curing, standard curing, and cold weather curing. Under the conditions tested, the results show that the addition of GGBFS at a relatively low replacement rate can improve the hardened properties for each curing regimen. This improvement was noticeable not only at later ages but also at early ages. Mixtures that contained both materials (GGBFS and fly ash) performed as well as and, in most cases, better than mixtures that contained only portland cement in all curing regimens.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4999
Author(s):  
Lanh Si Ho ◽  
Kenichiro Nakarai ◽  
Kenta Eguchi ◽  
Yuko Ogawa

To improve the strength of cement-treated sand effectively, the use of various cement types was investigated at different curing temperatures and compared with the results obtained from similar mortars at higher cement contents. The compressive strengths of cement-treated sand specimens that contained high early-strength Portland cement (HPC) cured at elevated and normal temperatures were found to be higher than those of specimens that contained ordinary Portland cement (OPC) and moderate heat Portland cement at both early and later ages. At 3 days, the compressive strength of the HPC-treated sand specimen, normalized with respect to that of the OPC under normal conditions, is nearly twice the corresponding value for the HPC mortar specimens with water-to-cement ratio of 50%. At 28 days, the normalized value for HPC-treated sand is approximately 1.5 times higher than that of mortar, with a value of 50%. This indicates that the use of HPC contributed more to the strength development of the cement-treated sand than to that of the mortar, and the effects of HPC at an early age were higher than those at a later age. These trends were explained by the larger quantity of chemically bound water observed in the specimens that contained HPC, as a result of their greater alite contents and porosities, in cement-treated sand. The findings of this study can be used to ensure the desired strength development of cement-treated soils by considering both the curing temperature and cement type. Furthermore, they suggested a novel method for producing a high internal temperature for promoting the strength development of cement-treated soils.


Author(s):  
Yoichi Mimura ◽  
Vanissorn Vimonsatit ◽  
Yuki Watanabe ◽  
Itaru Horiguchi ◽  
Isamu Yoshitake

Initial cracks due to volume changes at an early age affect the durability of concrete structures, so numerical simulations are often conducted in order to predict cracks. Such prediction requires some mechanical properties of early age concrete. Tensile Young's modulus is directly dependent on the prediction of tensile stress and is one of the important input data for FEM analysis. However, direct tension test for tensile Young's modulus needs a unique apparatus and specimen, and such test is not suitable for evaluating Young's modulus at early ages of concrete. The present study compared tensile Young's modulus with compressive Young's moduli of Fly ash concrete. Compressive Young's moduli used in this study were secant modulus and initial tangent modulus. In addition, linear modulus taken from a regression line of a compressive stress-strain curve in the range of stresses less than the splitting tensile strength was also evaluated. It is found that the secant modulus, which is generally used as Young's modulus in Japan was clearly smaller than the tensile Young's modulus, which means that, tensile stresses evaluated using a secant modulus might be underestimated. On the other hand, linear modulus and initial tangent modulus were almost equal to the tensile Young's modulus. This result indicates that tensile stresses can be evaluated using Young's modulus obtained from a compression test with general apparatus and specimens.


2012 ◽  
Vol 174-177 ◽  
pp. 380-383 ◽  
Author(s):  
Hong Zhu Quan

The paper presents the results of series of experimental studies on effects of the type and replacement ratio of fly ash to portland cement on durability of concrete. Specimens made from 28 mixes of fly ash concrete with water binder ratio of 38% to 60% and with replacement ratio of fly ash of 25% to 70% and 5 mixes of portland cement concrete with water cement ratio of 38% to 75% were tested for compressive strengths, drying shrinkage, carbonation and resistance to freezing and thawing. As a results, drying shringkage decreased with fly ash addition regardless of type and replacement ratio of fly ash. Carbonation increased with fly ash replacement ratio, and type 1 fly ash showed higher carbonation. Type 1 and tpye 2 fly ashes showed practically no change in durability factor after 300 cycles of freezing and thawing up to 55% replacement, while type 4 fly ash showed rapid reduction in durability factor up to 40% replacement ratio.


Sign in / Sign up

Export Citation Format

Share Document