scholarly journals Bioleaching kinetics of trace metals from coal ash using Pseudomonas spp.

2019 ◽  
Vol 268 ◽  
pp. 01010
Author(s):  
Denvert Pangayao ◽  
Michael Angelo Promentilla ◽  
Susan Gallardo ◽  
Eric van Hullebusch

The kinetics of bioleaching of chromium, copper, manganese and zinc from coal ash using Pseudomonas spp. isolated from coal ash pond was investigated. From the previous study, parameters used for bioleaching were 1% pulp density, 90 rpm, 37°C and 5 ml inoculum was placed in a 100 ml fresh medium with the ash. These conditions were used for bioleaching of coal ash for 30 days. Moreover, the initial pH of the solution is 8.20 and decreases to 8.61. After 30 days of bioleaching, the maximum metal leached were 13.77% Cr, 14.61% Cu, 6.33% Mn and 12.18% Zn. Assuming that the coal ash will shrink uniformly with respect to time using Shrinking Core Model, the kinetic data showed linear plot for percent metal leached versus time, suggested that diffusion through ash layer control was the rate controlling mechanism.

The objective of this study was to isolate an acidophilic iron-oxidizing bacterium, Leptospirillum ferriphilum, and explore the impacts of initial Fe(II) concentration on the bioleaching kinetics of zinc retrieval from sphalerite concentrate. L. ferriphilum strain was successfully isolated from Chitradurga mine, Karnataka, India, and molecular techniques for DNA sequencing were applied. The obtained nucleotide sequence was deposited to GenBank and accession number KF743135 was granted. The effect of Fe(II) on the iron-based bioleaching kinetics of zinc leaching using the L. ferriphilum isolate was ascertained under the following experimental conditions: inoculum size, 10% (v/v); bioleaching period, 20 days; system temperature, 301±2 K; initial pH, 3; pulp density 5% (w/v); and Fe(II) concentration in the medium, 1–9 g/L. The results demonstrated that efficiency of bioleaching was highly influenced by concentration of Fe(II) and maximized yield of 87.85% zinc was obtained at 7 g/L. The kinetic study specify that the rate constant estimations of zinc biosolubilization were moderately high at 7 g/L Fe(II), and the kinetic analysis using shrinking core model showed that the leaching rate is constrained by ash layer diffusion step


2021 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Joseph Ogbezode ◽  
Olufemi Ajide ◽  
Soji Ofi ◽  
Oluleke Oluwole

In the present work, an attempt is made to use non-contact charcoal in the reduction of run-off mine goethite ore at heating temperatures above 570 °C. The reduction mechanism was adopted, following Levenspiel’s relations for the shrinking core model at different stages of reduction. The non-contact charcoal reduction approach is adopted to maximize the benefit of using CO/CO2 gases from charcoal for reduction without the need for beneficiation and concentration. The rate-controlling steps for the reduction kinetics of average particle sizes 5, 10, 15, and 20 mm at 570, 700, 800, 900, and 1000 °C were studied after heat treatment of the ore-wood charcoal at a total reduction time of 40 min using activated carbon reactor. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses were done to investigate the spectrometric phase change and metallic components of the ore sample after reduction, respectively. The average percentage of the metallic iron content (56.6, 60.8, and 61.7%) and degree of metallization (91.62, 75.96, and 93.6%) are achieved from the SEM/EDX analysis of the reduced ore sample at reduction temperatures of 570, 800, and 1000 °C, respectively. The results indicate the tendency for high carbon deposit at the wustite stage of the reduction process at the lowest of temperature 570oC and the residence time of at 10 min. This study demonstrates that diffusion through the ash layer is the controlling resistance of the overall reduction process.


This study was designed to investigate the effect of temperature on iron bioleaching kinetics using Leptospirillum ferriphilum. The bacteria were isolated and subjected to molecular characterization technique for confirming L. ferriphilum. Using the isolate, bioleaching data were collected in the temperature range of 298–318 K at an initial pH of 1.5 and 5% pulp density with an average particle size being 300 µm. The results of experiments concluded that leaching efficiency increases with temperature and maximum of 93.85% were observed after 20 days at 313 K. The bioleaching kinetics indicated that the maximum rate (rate constant: 0.1452 d1 ) was found in the experiment conducted at the optimum temperature, and the rate-controlling step was “diffusion through ash layer.” The activation energy was calculated to be 37.59 kJ/mol. From the thermodynamic study of the bioleaching system, ∆H˚ and ∆S˚ were found to be 0.7399 × 10−3 and 28.512 J/mol, respectively


2015 ◽  
Vol 51 (1) ◽  
pp. 89-95 ◽  
Author(s):  
M. Erdem ◽  
M. Yurten

In the hydrometallurgical zinc production processes, important amount of hazardous solid extraction residue containing unextractable Zn and Pb is generated. Due to increasing demand of metals and the depletion of high grade natural resources, these types of wastes are gaining great importance in the metallurgical industries. In this study, selective leaching and leaching kinetics of Pb and Zn from zinc extraction residue were investigated. For this purpose; the effects of NaOH concentration, contact time, stirring speed and temperature on the Pb and Zn recovery from the residue were studied. The shrinking core model was applied to the results of the experiments. Leaching results showed that 85.55% Pb and 21.3 % Zn could be leached under the optimized conditions. The leaching of Pb and Zn were found to fit well to shrinking core model with ash layer diffusion control. Activation energy values for Pb and Zn leaching were calculated to be 13.645 and 22.59 kJ/mol, respectively.


2018 ◽  
Vol 156 ◽  
pp. 03031
Author(s):  
Denvert Pangayao ◽  
Susan Gallardo ◽  
Michael Angelo Promentilla ◽  
Eric van Hullebusch

Bioleaching of chromium, copper, manganese and zinc from coal ash were investigated using isolates from coal ash ponds particularly Psuedomonas spp. Six (6) different coal ash ponds were examined however, after initial screening Psuedomonas spp. were only present in three (3) coal ash ponds. Among the three coal ash ponds, results showed that eight (8) putative Pseudomonas spp. isolates were present that were identified using the Polymerase Chain Reaction (PCR). Using the eight putative Pseudomonas spp. for bioleaching at optimum conditions and 15 days, the pH value ranges from 8.26 to 8.84 which was basic in nature. Moreover, the maximum metal leached were 8.04% Cr, 12.05% Cu, 4.34% Mn and 10.63% Zn.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2031
Author(s):  
Ruben Miranda ◽  
Isabel Latour ◽  
Angeles Blanco

Effluent reuse is a common practice for sustainable industrial water use. Salt removal is usually carried out by a combination of membrane processes with a final reverse osmosis (RO). However, the presence of silica limits the RO efficiency due to its high scaling potential and the difficulty of cleaning the fouled membranes. Silica adsorption has many advantages compared to coagulation and precipitation at high pHs: pH adjustment is not necessary, the conductivity of treated waters is not increased, and there is no sludge generation. Therefore, this study investigates the feasibility of using pseudoboehmite and its calcination product (γ-Al2O3) for silica adsorption from a paper mill effluent. The effect of sorbent dosage, pH, and temperature, including both equilibrium and kinetics studies, were studied. γ-Al2O3 was clearly more efficient than pseudoboehmite, with optimal dosages around 2.5–5 g/L vs. 7.5–15 g/L. The optimum pH is around 8.5–10, which fits well with the initial pH of the effluent. The kinetics of silica adsorption is fast, especially at high dosages and temperatures: 80–90% of the removable silica is removed in 1 h. At these conditions, silica removal is around 75–85% (<50 mg/L SiO2 in the treated water).


1979 ◽  
Vol 32 (12) ◽  
pp. 2597 ◽  
Author(s):  
AO Filmer ◽  
AJ Parker ◽  
BW Clare ◽  
LGB Wadley

The kinetics of oxidation with oxygen of chalcocite, Cu2S, to CuS in buffered aqueous ammonia at pH 10.5 at 30� can be modeled approximately by a shrinking core of Cu2S within a thickening shell of CuxS (x ≥ 1). The Cu2S core offers partial cathodic protection to the CuxS and diffusion of Cu+ through CuxS controls the rate of reaction. The kinetics of oxidation of covellite, CuS, to Cu2+, sulfur and sulfate ions in the same solvent can be modeled by a shrinking core of CuS surrounded by a shrinking sphere of CuyS (y < 1) which is much less effectively protected cathodically by the CuS core. Oxidation of CuS is subject to mixed chemical and diffusion control. Rates of oxidation of NiS and of CuS, in the presence and absence of tetrachloroethene and ammonium sulfate, show that, whether sulfur is a major oxidation product or not, the presence of sulfur has very little, if any, influence on the rate or mechanism of oxidation. This is contrary to current ideas on metal sulfide oxidation.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ying Yue Teng ◽  
Yu Zhe Liu ◽  
Quan Sheng Liu ◽  
Chang Qing Li

The macerals, including fusinitic coal containing 72.20% inertinite and xyloid coal containing 91.43% huminite, were separated from Shengli lignite using an optical microscope, and their combustion reactivity was examined by thermogravimetric analysis. Several combustion parameters, including ignition and burnout indices, were analyzed, and the combustion kinetics of the samples were calculated by regression. Fusinitic coal presented a porous structure, while xyloid coal presented a compact structure. The specific surface area of fusinitic coal was 2.5 times larger than that of xyloid coal, and the light-off temperature of the former was higher than that of the latter. However, the overall combustion reactivity of fusinitic coal was better than that of xyloid coal. The combustion processes of fusinitic and xyloid coals can be accurately described by both the homogeneous model and the shrinking core model. The features of xyloid coal agree with the shrinking core model when its conversion rate is 10%–90%. The activation energy of fusinitic coal during combustion can be divided into three phases, with the middle phase featuring the highest energy. The activation energy of xyloid coal is lower than that of fusinitic coal in the light-off phase, which may explain the low light-off temperature of this coal.


2018 ◽  
Vol 53 ◽  
pp. 04004 ◽  
Author(s):  
Xiaofan Yang ◽  
Xueyu Wei ◽  
Xiaoping Xu ◽  
Zhigang Liu

Microcystin-LR (MC-LR) is one of the most notorious toxins liberated from cyanobacteria in drinking water sources. In this study, a skillful method access to new nanozero-valent iron @chitosan (nZVIMC) was synthesized by a facile one step method. The as-prepared nZVIMC was employed as an adsorbent for the effective removal MC-LR from aqueous solution. Transmission electron microscopy (TEM) demonstrates that nZVIMC is in quasi-spherical shape with size of around 50 nm, effect of variable parameters such as pH, contact time, initial concentration of MC-LR and adsorption properties of nZVIMC on MC-LR was further investigated. Scanning electron microscope (SEM) reveals that the particles are nearly spherical in shape with agglomeration. The results indicated that good adsorption performance was achieved at an initial pH of 5. The adsorption kinetics of nZVIMC was better fitted by pseudo-secondorder kinetics. The adsorption isotherm data was fitted well to Langmuir isotherm and then to Freundlich model, with an adsorption capacity of 68.9 mg/g at 300K. Thus, we believe that nZVIMC can be used as a low cost material for efficient removal of MC-LR from water.


Sign in / Sign up

Export Citation Format

Share Document