scholarly journals Tribological researches of triboelements topography of hob milling process of cylindrical gear serration

2019 ◽  
Vol 287 ◽  
pp. 05003
Author(s):  
Bogdan Sovilj ◽  
Sandra Sovilj-Nikic ◽  
Juliana Javorova

Hob milling process is one of the most important links in the chain of machining because productivity, final geometrical accuracy and gear cutting are very dependent on it. The quality of the machining of gear serration is one of the conditions for achieving the required quality of the work-piece. In this paper the methodology for the identification of topography of tool teeth and gear serration produced by uncoated and coated model and real hob milling tool is presented.

2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Syaimak Abdul Shukor

Custom-built Miniature Machine Tools (MMTs) are now becoming more popular with the demand for reduced energy consumption and workshop floor when machining small/medium batch size micro-components. This paper investigates the capability of a custom-built 4-axis MMT through machining an “adapted standard‟ of micro-testpiece. The experiments have been carried out in two different materials: Carbon Steel (AISI 1040) and Titanium Alloyed (TiAl6V4) using solid carbide flat end mill cutters with 0.6mm diameter. From here, the surface quality and geometrical accuracy of the machined testpiece are evaluated and analysed. The investigation has shown that acceptable geometrical accuracies and surface quality of the machined micro-parts can be achieved using the in-house developed MMT. These results show that the use of the custom-made MMT does not hinder the micro-milling process to produce a good and satisfactory surface quality (Ra=0.04-0.07μm) and acceptable geometrical accuracy.


2011 ◽  
Vol 418-420 ◽  
pp. 1502-1506
Author(s):  
Abdul Shukor Syaimak

Custom-built Miniature Machine Tools (MMTs) are now becoming more popular with the demand for reduced energy consumption and workshop floor when machining small/medium batch size micro-components. This paper investigates the capability of a custom-built 4-axis MMT through machining a micro-component demonstrator. The experiments have been carried out in Titanium Alloyed (TiAL6V4) using 0.6mm solid carbide flat end mill cutters. From here, the surface quality and geometrical accuracy of the machined testpiece are evaluated and analysed. The investigation has shown that acceptable geometrical accuracies and surface quality of the machined micro-demonstrator can be achieved using the in-house developed MMT. These results show that the use of the custom-made MMT does not hinder the micro-milling process to produce a good and satisfactory surface quality and acceptable geometrical accuracy.


2022 ◽  
Vol 2022 (1) ◽  
pp. 37-48
Author(s):  
Aleksandr Sandler

The results of scientific research of production technology aimed at identifying predictable errors and ensuring the required quality of processing are presented.


2018 ◽  
Vol 184 ◽  
pp. 03011 ◽  
Author(s):  
Sandra Sovilj-Nikić ◽  
Bogdan Sovilj ◽  
Gyula Varga ◽  
Nicolae Ungureanu ◽  
Vladimir Blanuša

The improvement of the gear cutting process by hob milling is also significant for the producers of gears as well as for the producers of hob milling tools. Due to the complexity of the process, the high values of the gears, and in particular the hob milling tool, the research of the bases for optimizing the process of gear cutting by hob milling requires significant financial resources and significant efforts of the researchers. In the modern production of gears there is a continuous demand for increasing the economy. In the gear cutting process improvements of the production equipment and materials for the cutting elements of the hob milling tools are necessary. In this paper an analysis of the tool life of coated hob milling tools for gear cutting of cylindrical gears is given. The experimental results have shown that the hob milling tools with inserted combs coated with TiAlN outperform the hob milling tools with inserted combs coated with TiN. They have higher resistance of 60.6 %.


In construction production, the safety of constructing buildings and structures is achieved by ensuring the required quality as a result of systematic construction control based on the implementation of a complex of technical, economic and organizational measures at all stages of the object's life cycle. The article deals with the actual problem of improving the quality of construction products-buildings and structures in conjunction with the activities of construction control bodies. The article presents the advanced foreign and domestic experience of ensuring the quality control at the construction sites, providing for the prevention of the underlying causes of defects and increasing the interest of the contractors directly. On the basis of the analysis of the current situation with quality control at the construction market, ways to improve its efficiency by developing a unified system of technological implementation of relevant requirements for the quality of construction products, determining the rational number and business load of construction control engineers, as well as the active activities of self-regulatory organizations in this area are offered.


2017 ◽  
Vol 14 (4) ◽  
pp. 30-38
Author(s):  
V. G. Isaev ◽  
T. N. Antipova

Basic provisions of the concept and methodology of production of composite materials for the missile and space equipment are offered. The system of the purposes realizing the principle of a priority of the purposes of the customer is offered. The system of evaluation criteria and indicators of quality of composite materials the realizing interrelation of requirements of the customer to quality of material and dependence of ensuring the required quality on the used technologies is developed. It is shown that for ensuring quality of composite materials for units and the RKT systems first of all it is necessary development of mathematical dependences of properties of materials on parameters of the technological modes in the conditions of obligatory implementation of requirements of the customer.


2018 ◽  
Vol 77 (4) ◽  
pp. 211-217 ◽  
Author(s):  
P. N. Pulatov

Current geopolitical and economic conditions for the functioning of railway transport in most post-Soviet states are such that it is extremely difficult to provide required quality of transport services and break-even operations at high expenses for maintaining the railway infrastructure and rolling stock. Dynamics of transportation of the Tajik Railway (TSR) is shown, which displays that most of its sections are classified as low-intensity ones. The paper proposes methodical principles, setting and qualitative analysis of the task of rationalization of operational work and organization of car flows for international transportation, taking into account the specifics of the Tajik Railway. There is a problem of complex maintenance of the efficiency of operational work in modern conditions based on the synthesis of the tasks of self-management (rational internal operational technology of the Tajik Railway) and coordination tasks (technological interaction with railway administrations of other states). Author substantiated the necessity of solving this problem. Proposed classification of technological restrictions and controlled variables in the performance of transport takes into account methods for changing external conditions for the functioning of the railway landfill and methods for increasing internal efficiency of its operation. The search for the solution of the problem involves direct search of variants along its ordered set with clipping of groups of variants that do not correspond to constraints, with the subsequent finding of compromise control over a set of effective alternatives.


2014 ◽  
Vol 532 ◽  
pp. 249-252
Author(s):  
Ying Hua Liao ◽  
Gao Jun Liu ◽  
Xiang Guo Sun

An intelligent CAD system for Involute cylindrical gear cutting tools is developed by VC++ and SQL server, and it includes four modules, such as user interface, instance query, intelligent gear tool design and database. The intelligent gear tool design is the key to the intelligent CAD system, and it is based on the forward reasoning production system, and as the Intelligent reasoning technology is used for gear tool design, a lots of expert knowledge could be made full use of. The design results by the developed intelligent CAD system are more reasonable than those by a traditional CAD system, and the efficiency and quality of the gear tool design also could be improved. The developed intelligent CAD system supports both 2D and 3D models, which can lay foundation for CAD/CAE/CAM integration of gear cutting tools.


2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Wenshuo Ma ◽  
Jingjun Yu ◽  
Yiqing Yang ◽  
Yunfei Wang

Milling tools with a large length–diameter ratio are widely applied in machining structural features with deep depth. However, their high dynamic flexibility gives rise to chatter vibrations, which results in poor surface finish, reduced productivity, and even tool damage. With a passive tuned mass damper (TMD) embedded inside the arbor, a large length–diameter ratio milling tool with chatter-resistance ability was developed. By modeling the milling tool as a continuous beam, the tool-tip frequency response function (FRF) of the milling tool with TMD was derived using receptance coupling substructure analysis (RCSA), and the gyroscopic effect of the rotating tool was incorporated. The TMD parameters were optimized numerically with the consideration of mounting position based on the maximum cutting stability criterion, followed by the simulation of the effectiveness of the optimized and detuned TMD. With the tool-tip FRF obtained, the chatter stability of the milling process was predicted. Tap tests showed that the TMD was able to increase the minimum real part of the FRF by 79.3%. The stability lobe diagram (SLD) was predicted, and the minimum critical depth of cut in milling operations was enhanced from 0.10 to 0.46 mm.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Changixu Cheng ◽  
Xiaomei Song ◽  
Jing Yang ◽  
Xiatian Hu ◽  
Shi Shen ◽  
...  

This paper addresses a special zone design problem for economic census investigators that is motivated by a real-world application. This paper presented a heuristic multikernel growth approach via Constrained Delaunay Triangulation (CDT). This approach not only solved the barriers problem but also dealt with the polygon data in zoning procedure. In addition, it uses a new heuristic method to speed up the zoning process greatly on the premise of the required quality of zoning. At last, two special instances for economic census were performed, highlighting the performance of this approach.


Sign in / Sign up

Export Citation Format

Share Document