scholarly journals The immobilisation of heavy metals from sewage sludge ash in geopolymer mortars

2020 ◽  
Vol 322 ◽  
pp. 01026
Author(s):  
Mateusz Sitarz ◽  
Tomasz Zdeb ◽  
João Castro Gomes ◽  
Erick Grünhäuser Soares ◽  
Izabela Hager

Sewage sludge is a semi-solid waste material created as a result of the sewage treatment of industrial or municipal wastewater. Because the laws and regulations of the European Union require not only a reduction in waste generation but also the preparation of waste for reuse and disposal, it is necessary to look for new methods of the application of sewage sludge as part of sustainable waste management. In this study, ash formed as a result of the combustion of sewage sludge from the sewage treatment plant in Płaszów, Krakow in a fluidised bed furnace at a temperature of around 800°C was used. Sewage sludge ash (SSA) contains over 30% SiO2 and approx. 10% Al2O3, which indicates potential applications in geopolymer materials. In this study, samples of geopolymer mortars with a binder containing sewage sludge ash as well as fly ash (FA) and ground granulated blast furnace slag (GGBFS) were prepared. The mechanical parameters were determined after 2, 7, 14, and 28 days. The results show that the sewage sludge ash-based geopolymer shows binding properties at ambient temperature and, depending on the presence of FA and/or GGBFS, the compressive strength varies from 5 to 45 MPa after 28 days. The aim of the research was also to determine the total content of heavy metals (Sb, As, Cr, Cd, Cu, Ni, Pb, Hg, Zn) in the raw materials used and their leachability from the structure of the hardened materials. Immobilisation of heavy metals is very promising. Based on the results of tests, it seems possible to use SSA in geopolymer materials, but not as the main component of the binder.

Author(s):  
R. Edgecock ◽  
V. V. Bratishko ◽  
I. V. Zinchenko ◽  
S. H. Karpus ◽  
D. O. Milko ◽  
...  

Annotation Purpose. Summarize the regulatory and technological requirements for the production of organic (organo-mineral) fertilizers on the base of sewage sludge. Methods. Analysis and generalization of the requirements of regulatory documents on the management of organic waste and their use as raw materials for the production of organic fertilizers and soil improvers. Results. The current legislative, departmental and regulatory documentary base in Ukraine concerning the treatment of sediment resulting from biological sewage treatment at municipal wastewater treatment plants for its further use in agriculture as fertilizers is analysed. Indicators are identified and analysed to determine the possibility, feasibility, efficiency and scope of organic fertilizers produced using sewage sludge. The analysis of changes in the content of organic matter and total nitrogen in the sewage sludge during its storage at the sewage treatment plant sites is presented. The technological feasibility of using sludge of different shelf life in composting production has been determined. Conclusions 1. The regulatory framework of Ukraine contains a sufficiently complete list of indicators that should be met by organic raw materials (sewage sludge) for further use as organic fertilizers. Some of these indicators – bio security and heavy metals content – can be improved in the composting process of fertilizers. 2. Fresh sediment, as well as sediment accumulated in the last late autumn and winter periods, is of main value for use as a raw material in the production of organic fertilizers. 3. The use in the production of compost sludge stored on sludge sites for a period of half a year or more requires special control of the process of decontamination. In this case, it is advisable to use additional means of wastewater decontamination. Keywords: heavy metals, manure, humus, decontamination, composting, organic fertilizers, sewage sludge.


2021 ◽  
Vol 13 (22) ◽  
pp. 12893
Author(s):  
Erick Grünhäuser Soares ◽  
João Castro-Gomes ◽  
Mateusz Sitarz ◽  
Tomasz Zdeb ◽  
Izabela Hager

Sewage treatment processes are a serious environmental threat due to the difficulties involved in its waste management and disposal. Therefore, one developing trend in sewage sludge processing is its thermal treatment, which generates sewage sludge ash that may contain many environmental pollutants, such as heavy metals. Moreover, due to the European Union requirements that not only focus on the waste generation reduction but also on its reuse and final disposal, it is essential to pursue new applications of such resources, such as the waste-based material incorporation into alternative cementitious materials. Thus, this study evaluated the heavy metals leachability of CO2-cured mortars incorporating sewage sludge ash as filler. For this purpose, Portland cement, reactive magnesia, and electric arc furnace slag were used to produce three different CO2-cured mortars, which were cured though pressurised accelerated carbonation curing for 24h. These mortars presented up to 12.7 MPa as compressive strength and their carbonation was confirmed by TG-DTG and FT-IR analyses. Their leachability of heavy metals met the European requirements for all waste materials, including inert materials, and post-industrial wastewater. Therefore, the immobilisation of heavy metals in this binding technology may be considered an effective method to safely manage sewage sludge ash.


2019 ◽  
Vol 11 (4) ◽  
pp. 287-295
Author(s):  
ROBERT KOWALIK ◽  
◽  
JAROSŁAW GAWDZIK ◽  
BARBARA GAWDZIK ◽  
◽  
...  

2000 ◽  
Vol 42 (9) ◽  
pp. 159-165 ◽  
Author(s):  
H. Morita ◽  
H. Tsuboi

Sewage sludge mainly consists of organic matter, and it is rich in nutrients. Therefore, sewage sludge is beneficial as an energy resource and as a raw material for fertilizer. However, heavy metals in it are the obstacle to utilization of sludge. This study was conducted in order to know the chemical forms of heavy metals and their behavior in a sewage treatment plant as a basic study for development of technology to reduce heavy metals in sludge. Chemical methods and biological methods, such as extraction using acid, bacteria leaching, are applied to reduce heavy metals. In using these methods, the efficiency depends on the chemical forms of heavy metals. From this point of view, factors, which affect the chemical forms of heavy metals, were investigated through the survey at some plants of different conditions. Besides, experiments on the anaerobic digestion process, in which the chemical forms of heavy metals were expected to change, were conducted. As the results of these studies, it was found that the chemical forms of heavy metals and their behavior vary according to the species of heavy metals. In comparison of zinc (Zn), copper (Cu) and nickel (Ni), Cu was found to be changed most easily into a stable chemical form such as carbonate and sulfide. Zn was the second to Cu in its tendency to be stabilized. As for Ni, the tendency was further less than Zn.


2020 ◽  
Vol 12 (2) ◽  
pp. 85-92
Author(s):  
ROBERT KOWALIK ◽  
JAROSŁĄW GAWDZIK ◽  
BARBARA GAWDZIK ◽  
ALICJA GAWDZIK

Sewage sludge is a by-product of wastewater treatment processes. However, it has high fertilising and soil-forming properties, but it cannot always be used for this purpose. The two main criteria limiting their natural use are heavy metals and parasite eggs. Sewage sludge taken from the Daleszyce wastewater treatment plant has been analysed for heavy metals. For this purpose a space analysis was performed to divide the total metal content into four mobility fractions. The mobility issue determines the ability of an element, or one of its forms, to move in the environment. The studies were performed using a four-stage BCR procedure. The results were analyzed and compared to the limits applicable in Poland for sewage sludge intended for environmental use.


2001 ◽  
Vol 43 (2) ◽  
pp. 59-65 ◽  
Author(s):  
K. Kitada ◽  
A. Ito ◽  
K. Yamada ◽  
J. Aizawa ◽  
T. Umita

The utilization of indigenous sulfur-oxidizing bacteria and sulfur waste was investigated in order to remove heavy metals from anaerobically digested sewage sludge economically. Indigenous sulfur-oxidizing bacteria existing in anaerobically digested sewage sludge were activated by adding elemental sulfur to the sludge and then the bacteria were isolated. It was found that indigenous sulfur-oxidizing bacteria could utilize sulfur waste generated by desulfurization of digestion gas as a substrate. Then, biological leaching of heavy metals from anaerobically digested sewage sludge was carried out using indigenous sulfur-oxidizing bacteria and sulfur waste. By adding sulfur waste to sewage sludge, sulfuric acid was produced by the bacteria and the sludge pH decreased. Heavy metals in sewage sludge were effectively removed owing to the decrease of pH. The optimum amount of sulfur waste added to decrease the pH sufficiently was 5g/L when the sludge concentration was 2%. It was presented that the biological leaching of heavy metals from sewage sludge can be carried out in a closed system, where all required materials are obtained in a sewage treatment plant.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 32
Author(s):  
Eliza Hawrylik

The aim of this article is to study the effect of low-frequency ultrasound on the disintegration of microorganisms present in mixed sewage sludge. Initial and excessive sewage sludge were used for examinations coming from the Bialystok Sewage Treatment Plant. They were exposed to ultrasound at 20 and 40 kHz, in varying sonification times and in the case of variable operation of the ultrasonic cleaner (continuous and pulsating work). Research showed that ultrasound was demonstrating effective action with the tested microorganisms. The 30-minute interaction of ultrasounds at 20 kHz on the bacteria present in sewage sludge resulted in a significant decrease in the number of these microorganisms. The obtained results, therefore, indicate the possibility of using this method to disintegrate microorganisms in municipal wastewater treatment plants.


2017 ◽  
Vol 1 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Athar Hussain ◽  
Manjeeta Priyadarshi ◽  
Saif Said ◽  
Suraj Negi

Most of the industrial sewage effluents used for irrigation contains heavy metals which cause toxicity to crop plants as the soils are able to accumulate heavy metal for many years. The vegetables grown for the present study were irrigated with treated wastewater brought from a nearby full-scale sewage treatment plant at different compositions along with tap water as a control. The concentration levels of the Cd, Co, Cu, Mn and Zn in the soil were found to below the toxic limits as prescribed in literature. Daily Intake Metals (DIM) values suggest that the consumption of plants grown in treated wastewater and tap water is nearly free of risks, as the dietary intake limits of Cu, Fe, Zn and Mn. The Enrichment Factor for the treated wastewater irrigated soil was found in order Zn> Ni> Pb> Cr> Cu> Co> Mn> Cd. Thus, treated wastewater can be effectively used for irrigation. This will have twofold significant environmental advantages: (1) helpful to reduce the groundwater usage for irrigation and (2) helpful to reduce the stress on surface water resources.


1991 ◽  
Vol 23 (10-12) ◽  
pp. 1773-1781 ◽  
Author(s):  
Daisaku Yashiki ◽  
Tadahiro Murakami

Sludge melting furnaces have been applied recently to the treatment of a great deal of sludge generated from the sewage treatment plant. In this report, an explanation is provided of the history of system introduction, outline of treatment flow, sludge properties, operation results and effective utilization of slag generated at the reflector melting furnace, which began operation in July 1988 at the Futakami Sewage Treatment Plant in Toyama Prefecture. The melting furnace almost totally satisfies the needs of its design, and the properties of the generated melted slag exhibit the features that fully enable its effective utilization.


Sign in / Sign up

Export Citation Format

Share Document