scholarly journals Application of variable equivalent amplitude for determination of fatigue life of elements subjected to block loading

2021 ◽  
Vol 338 ◽  
pp. 01020
Author(s):  
Justyna Obrał ◽  
Marta Kurek ◽  
Tadeusz Łagoda ◽  
Karolina Głowacka

This paper contains a proposition of a new method of determining the fatigue life of elements subjected to non-stationary loads. The model was based on the determination of the time-variable equivalent weighted amplitude. This amplitude is derived on a continuous basis as the arithmetic mean of nth root of the amplitudes that occur up to a given time. The analysis of the proposed model was carried out on the basis of selected literature insights based on specimens made of P91 and P92 steels. The experimental tests were performed under block loading with a zero mean value in the conditions of tension-compression with a small number of cycles.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.



Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2738
Author(s):  
Roland Pawliczek ◽  
Tadeusz Lagoda

The literature in the area of material fatigue indicates that the fatigue properties may change with the number of cycles. Researchers recommend taking this into account in fatigue life calculation algorithms. The results of simulation research presented in this paper relate to an algorithm for estimating the fatigue life of specimens subjected to block loading with a nonzero mean value. The problem of block loads using a novel calculation model is presented in this paper. The model takes into account the change in stress–strain curve parameters caused by mean strain. Simulation tests were performed for generated triangular waveforms of strains, where load blocks with changed mean strain values were applied. During the analysis, the degree of fatigue damage was compared. The results of calculations obtained for standard values of stress–strain parameters (for symmetric loads) and those determined, taking into account changes in the curve parameters, are compared and presented in this paper. It is shown that by neglecting the effect of the mean strain value on the K′ and n′ parameters and by considering only the parameters of the cyclic deformation curve for εm = 0 (symmetric loads), the ratio of the total degree of fatigue damage varies from 10% for εa = 0.2% to 3.5% for εa = 0.6%. The largest differences in the calculation for ratios of the partial degrees of fatigue damage were observed in relation to the reference case for the sequence of block n3, where εm = 0.4%. The simulation results show that higher mean strains change the properties of the material, and in such cases, it is necessary to take into account the influence of the mean value on the material response under block loads.



2012 ◽  
Vol 726 ◽  
pp. 27-32 ◽  
Author(s):  
Grzegorz Robak ◽  
Marcel Szymaniec ◽  
Tadeusz Łagoda

In this paper, the fictitious radius - according to Neuber’s method for determination of stresses at the notch root was used. Next, the fatigue lives of elements of the ring notches were calculated, and then compared with results of experimental tests of S235JR steel samples. However, the obtained fatigue lives did not bring satisfactory results. It has been demonstrated that the fictitious radius strongly depends on the expected fatigue life



Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1194
Author(s):  
Rafael Tobajas ◽  
Daniel Elduque ◽  
Elena Ibarz ◽  
Carlos Javierre ◽  
Luis Gracia

Most of the mechanical components manufactured in rubber materials experience fluctuating loads, which cause material fatigue, significantly reducing their life. Different models have been used to approach this problem. However, most of them just provide life prediction only valid for each of the specific studied material and type of specimen used for the experimental testing. This work focuses on the development of a new generalized model of multiaxial fatigue for rubber materials, introducing a multiparameter variable to improve fatigue life prediction by considering simultaneously relevant information concerning stresses, strains, and strain energies. The model is verified through its correlation with several published fatigue tests for different rubber materials. The proposed model has been compared with more than 20 different parameters used in the specialized literature, calculating the value of the R2 coefficient by comparing the predicted values of every model, with the experimental ones. The obtained results show a significant improvement in the fatigue life prediction. The proposed model does not aim to be a universal and definitive approach for elastomer fatigue, but it provides a reliable general tool that can be used for processing data obtained from experimental tests carried out under different conditions.



Author(s):  
Shin-ichi Watanabe ◽  
Koh-ichi Imamura ◽  
Osamu Watanabe ◽  
Akihiro Matsuda

This paper shows randomness effects of loading amplitude and mean value of displacement-controlled loading history for perforated plates made of SUS304 stainless steel at elevated temperature of 550°C. Under the random wave of strain amplitude, the fracture behavior at elevated temperature environment is clarified by measuring the load-deflection curve at all cycles. The data of experiments were evaluated by Miner’s rule, which has been established as an evaluation method for load variation problem. Number of cycles to fracture is compared to show the good agreement with the Best Fit Fatigue curve (BFF). Peak count method also was used in calculating frequency of the strain in order to evaluate Miner’s rule, and the local strain concentration is calculated based on Stress Redistribution Locus (SRL) method. The other object of this study is to evaluate effect of mean value of strain in loading diagram on fatigue life. The mean strain were used for the cases of R = −0.0, −0.2, −0.4, −0.8 and −1.0. The crack length is measured by using photographs with the CCD video camera at a constant frequency. From the measurement, it is found that the number of cycles to failure is reduced when the absolute of value of mean strain is decreased. And cracks develop at both sides around the hole, but the growth of each crack may not be symmetric. By using these inelastic strain amplitude and crack initiation cycle, the experimented results are shown at the present study.



Author(s):  
Sebastian Cravero ◽  
Hugo Ernst

The fatigue failure in components is divided in two stages: an initiation stage that defines the number of cycles that it takes for a crack to appear in the material and a second stage that estimates the number of cycles where the crack grows until it becomes unstable. Usual fatigue life estimation procedures (in crack free components) only consider the initiation stage and assume that the crack propagation period is relatively small compared with the total life. However, in the case of severely notched geometries like threaded connections, the propagation stage can be an important part of the component fatigue life and must be evaluated. A fundamental issue in the calculation of initiation plus propagation fatigue life is the definition of the initial crack size after the initiation stage. In the present study techniques for crack initiation and crack growth are described. Also the procedure to combine the two techniques and define an initial crack size is presented. The study is based on previous work of C. Navarro, et al. [1]. Additionally, validation against experimental tests on notched specimens is provided.



2015 ◽  
Vol 664 ◽  
pp. 285-294 ◽  
Author(s):  
D.S. Paolino ◽  
A. Tridello ◽  
G. Chiandussi ◽  
Massimo Rossetto

In recent years, experimental tests investigating properties of materials in gigacycle regime have suggested modifications to well-known statistical fatigue life models. Classical fatigue life models based on a single failure mode and by the presence of the fatigue limit, have been integrated by models that can take into account the occurrence of two failure modes (duplex S-N curve).Duplex S-N models involve a number of unknown parameters that must be statistically estimated from experimental data. The present paper proposes a simplified and automated procedure for statistical parameter estimation. The procedure is applied to experimental datasets taken from the literature. Parameter estimation is carried out by applying the Maximum Likelihood Principle and by taking into account the possible presence of runout specimens with unequal number of cycles. The application of the procedure permits to estimate different key material parameters (e.g., the characteristic parameters of transition stress and fatigue limit), as well as to statistically predict the failure mode of each tested specimen.



Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 209 ◽  
Author(s):  
Roland Pawliczek ◽  
Dariusz Rozumek

The paper presents an algorithm for calculating the fatigue life of S355J0 steel specimens subjected to cyclic bending, cyclic torsion, and a combination of bending and torsion using mean stress values. The method of transforming cycle amplitudes with a non-zero mean value into fatigue equivalent cycles with increased amplitude and zero mean value was used. Commonly known and used transformation dependencies were used and a new model of the impact of the mean stress value on the fatigue life of the material was proposed. The life calculated based on the proposed algorithm was compared with the experimental life. It has been shown that the proposed model finds the widest application in the load cases studied, giving good compliance of the calculation results with the experimental results.



Author(s):  
Nenad Stojkovic ◽  
Dragoslav Stojic ◽  
Srdjan Zivkovic ◽  
Gordana Toplicic-Curcic

Fatigue life prediction of structural elements subjected to cyclic loading is usually performed using S-N curves, obtained from the experimental data from fatigue tests. However, in some cases the samples do not exhibit failure, due to reaching the predetermined number of cycles, failure of a non-relevant segment or terminating the test because of some other reason. These samples are usually referred to as runouts, and the data obtained from them could be used for determination of S-N curves as well. In this paper, the algorithm based on Maximum Likelihood method is proposed for the determination of S-N curves from experimental data that contain runouts. Following the algorithm, a MATLAB code was written and the verification was performed using the experimental data from the literature. The results showed that it could be successfully used for taking into account the runouts in the process of determination of S-N model parameters. It was concluded that the inclusion of runouts could significantly influence the predicted fatigue life, especially at the lower stress levels.



Sign in / Sign up

Export Citation Format

Share Document