Aerodynamic control of a diffusion flame to optimize materials' transition in a rotary cement kiln

2020 ◽  
Vol 21 (4) ◽  
pp. 414
Author(s):  
Mohamed Nial ◽  
Larbi Loukarfi ◽  
Hassane Naji

The aim of this work is to deepen the understanding of the aerodynamics of a diffusion flame in a rotary cement kiln. The kiln is a rotary with a cylindrical shaped, long and equipped with a burner, and it is the seat of a diffusion flame with an axisymmetric turbulent jet. The kiln has a capacity of 8,000 Nm3 to 13,000 Nm3 of natural gas and primary air at T = 25 °C which interacts with a secondary hot air volume at T = 800 °C. The aerodynamic modelling of the furnace is achieved using the turbulence model RNG k–ε, which is able to handle the turbulence and capture the vortex shedding process. The Ansys/Fluent code, based on the finite volume approach to solve the Reynolds averaged Navier-Stokes (RANS), was used in this study. The interactions between turbulence and diffusion flame were handled by the PDF (Probability Density Function) approach. The numerical simulations have been validated by experiments from the kiln considered. Based on the findings obtained, it is concluded that the recirculation zone seems of paramount importance when combustion is taken into account because the reverse flow improves the flame stability and affects the combustion efficiency. In addition, limiting the secondary air flow through the furnace is major to improve combustion and avoid disturbing the advancement of the material along the kiln.

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Sribhashyam K. Kireeti ◽  
Ravikiran Sastry Gadepalli ◽  
Santhosh K. Gugulothu

Abstract In this study, the flow dynamics with finite volume approach on commercial software Ansys-Fluent 20.0 to solve the compressible two-dimensional fluid flow with Reynolds Average Navier Stokes equation (RANS) equation by considering the density-based solver with Shaer stress transport model (SST) k- ω turbulent model. The species transport model with volumetric reaction and finite rate/eddy dissipation turbulence chemistry interaction is adopted to study the combustion phenomena. Additionally, the effect of spacing between the struts on the flow characters and performance of the combustor is studied by increasing the spacing of struts from 1 mm to 4 mm for each increment of 1 mm. It is found that the multi strut improves the mixing and combustion efficiency compared with that of the single strut owing to the formation of a significant separation layer, resulting in multiple shocks, vortices, and a larger recirculation zone. However, when the spacing of struts is increased further, the performance of the combustor is found to be deteriorating owing to the formation of larger separation layers. The recirculation zone is significant when the strut spacing is minimal and shrinks and restricts itself within the cavity when spacing is increased. So, for better performance of combustor, multi strut with minimum spacing is preferable.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sribhashyam Krishna Kireeti ◽  
Gadepalli Ravikiran Sastry ◽  
Santosh Kumar Gugulothu

Abstract A detailed numerical analysis on a scramjet combustor is carried out by introducing an innovative shaped strut in place of the conventional strut. The design of newly added strut aids in generating intense vorticity which helps in efficient mixing of fuel and oxidizer. The air from the isolator enters the combustor at Mach 2.0, whereas fuel enters from the trailing edge of the strut sonically. In this study the flow dynamics with finite volume approach on commercial software Ansys-Fluent 20.0 to solve the two-dimensional Reynolds average Navier Stokes equation (RANS) with compressible fluid flow by considering the density-based solver with SST k-ε turbulent model. The species transport model with volumetric reaction and finite rate/eddy dissipation turbulence chemistry interaction is adopted to study the combustion phenomena and validated with the experimental results, and it is found that the interaction of the shear shock layer enhances the mixing rate by intensifying turbulence. The modified strut injector’s mixing efficiency is compared to the base strut and observed that with a 40% reduction in length, the modified strut injection technique exhibited a mixing efficiency of >95%. The combustion efficiency is then estimated streamwise, and the plot follows the same pattern as the mixing efficiency with fuel burns down completely when x = 150 mm for the modified strut whereas x = 200 mm for the base strut. This can compact the combustion chamber and increases the thrust-to-weight ratio. So, the innovative strut adopted can improvise the combustion efficiency.


Author(s):  
Dmitry V. Volkov ◽  
Alexandr A. Belokon ◽  
Dmitry A. Lyubimov ◽  
Vladimir M. Zakharov ◽  
George Opdyke

This paper describes a model used for the prediction of the formation of nitrogen oxides in modifications of an industrial diffusion flame, natural gas fueled can combustor. The flow field inside the modified combustors is calculated using a Navier-Stokes solver. A fast chemistry assumption is used for modeling the heat release. Calculated turbulence parameters are then used for the calculation of the NOx formation rate in the post-processing mode with the aid of a flamelet model. The flamelet model permits the use of detailed kinetics with only minimal computational expense. The dependence of the NOx formation rate on the mixture fraction and scalar dissipation is calculated separately for each given condition. The validation of the model predictions is based on field test data taken earlier on several low NOx modifications recently applied to an industrial, reverse flow can type combustor. The reduced level of NOx emissions was achieved in these modifications by changes in the air distribution within the combustor liner. A comparison of the predicted and measured NOx emission levels shows good potential of the flamelet model.


2000 ◽  
Vol 123 (4) ◽  
pp. 774-778 ◽  
Author(s):  
D. V. Volkov ◽  
A. A. Belokin ◽  
D. A. Lyubimov ◽  
V. M. Zakharov ◽  
G. Opdyke,

This paper describes a model used for the prediction of the formation of nitrogen oxides in modifications of an industrial diffusion flame, natural gas fueled can combustor. The flowfield inside the modified combustors is calculated using a Navier-Stokes solver. A fast chemistry assumption is used for modeling the heat release. Calculated turbulence parameters are then used for the calculation of the NOx formation rate in the post-processing mode with the aid of a flamelet model. The flamelet model permits the use of detailed kinetics with only minimal computational expense. The dependence of the NOx formation rate on the mixture fraction and scalar dissipation is calculated separately for each given condition. The validation of the model predictions is based on field test data taken earlier on several low NOx modifications recently applied to an industrial, reverse flow can type combustor. The reduced level of NOx emissions was achieved in these modifications by changes in the air distribution within the combustor liner. A comparison of the predicted and measured NOx emission levels shows good potential of the flamelet model.


Author(s):  
M. A. Abd Halim ◽  
N. A. R. Nik Mohd ◽  
M. N. Mohd Nasir ◽  
M. N. Dahalan

Induction system or also known as the breathing system is a sub-component of the internal combustion system that supplies clean air for the combustion process. A good design of the induction system would be able to supply the air with adequate pressure, temperature and density for the combustion process to optimizing the engine performance. The induction system has an internal flow problem with a geometry that has rapid expansion or diverging and converging sections that may lead to sudden acceleration and deceleration of flow, flow separation and cause excessive turbulent fluctuation in the system. The aerodynamic performance of these induction systems influences the pressure drop effect and thus the engine performance. Therefore, in this work, the aerodynamics of motorcycle induction systems is to be investigated for a range of Cubic Feet per Minute (CFM). A three-dimensional simulation of the flow inside a generic 4-stroke motorcycle airbox were done using Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) solver in ANSYS Fluent version 11. The simulation results are validated by an experimental study performed using a flow bench. The study shows that the difference of the validation is 1.54% in average at the total pressure outlet. A potential improvement to the system have been observed and can be done to suit motorsports applications.


2020 ◽  
Vol 04 ◽  
Author(s):  
Guohai Jia ◽  
Lijun Li ◽  
Li Dai ◽  
Zicheng Gao ◽  
Jiping Li

Background: A biomass pellet rotary burner was chosen as the research object in order to study the influence of excess air coefficient on the combustion efficiency. The finite element simulation model of biomass rotary burner was established. Methods: The computational fluid dynamics software was applied to simulate the combustion characteristics of biomass rotary burner in steady condition and the effects of excess air ratio on pressure field, velocity field and temperature field was analyzed. Results: The results show that the flow velocity inside the burner gradually increases with the increase of inlet velocity and the maximum combustion temperature is also appeared in the middle part of the combustion chamber. Conclusion: When the excess air coefficient is 1.0 with the secondary air outlet velocity of 4.16 m/s, the maximum temperature of the rotary combustion chamber is 2730K with the secondary air outlet velocity of 6.66 m/s. When the excess air ratio is 1.6, the maximum temperature of the rotary combustion chamber is 2410K. When the air ratio is 2.4, the maximum temperature of the rotary combustion chamber is 2340K with the secondary air outlet velocity of 9.99 m/s. The best excess air coefficient is 1.0. The experimental value of combustion temperature of biomass rotary burner is in good agreement with the simulation results.


2014 ◽  
Vol 69 (2) ◽  
Author(s):  
Mohamad Shaiful Ashrul Ishak ◽  
Mohammad Nazri Mohd Jaafar

The main purpose of this paper is to study the Computational Fluid Dynamics (CFD) prediction on CO-NO formation production inside the combustor close to burner throat while varying the swirl angle of the radial swirler. Air swirler adds sufficient swirling to the inlet flow to generate central recirculation region (CRZ) which is necessary for flame stability and fuel air mixing enhancement. Therefore, designing an appropriate air swirler is a challenge to produce stable, efficient and low emission combustion with low pressure losses. A liquid fuel burner system with different radial air swirler with 280 mm inside diameter combustor of 1000 mm length has been investigated. Analysis were carried out using four different radial air swirlers having 30°, 40°, 50° and 60° vane angles. The flow behavior was investigated numerically using CFD solver Ansys Fluent. This study has provided characteristic insight into the formation and production of CO and pollutant NO inside the combustion chamber. Results show that the swirling action is augmented with the increase in the swirl angle, which leads to increase in the center core reverse flow, therefore reducing the CO and pollutant NO formation. The outcome of this work will help in finding out the optimum swirling angle which will lead to less emission.  


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Author(s):  
K. Vijaykumar ◽  
S. Poonkodi ◽  
A.T. Sriram

Sunroof has become one of the essential features of a luxury car, and it provides natural air circulation and good illumination into the car. But the primary problem associated with it is the buffeting noise which causes discomfort to the passengers. Though adequate studies were carried out on sunroof buffeting, efficient control techniques are needed to be developed from fundamental mechanism. To reduce the buffeting noise, flow modifications at the entrance of the sunroof is considered in this study. The internal portion of the car with sunroof is simplified into a shear driven open cavity, and two-dimensional numerical simulations are carried out using commercial solver, ANSYS Fluent. Reynolds averaged Navier-Stokes equation is used with the realizable k-? turbulence model. The unsteady numerical result obtained in this study is validated with the available experimental results for the dominant frequency. The prediction is good agreement with experiment. Flow modification technique is proposed to control the sunroof buffeting by implementing geometric modifications. A hump has been placed near the leading edge of the cavity which resulted in significant reduction of pressure oscillations. Parametric studies have been performed by varying the height of hump and the distance of hump from the leading edge. There is no prominent difference when the height of the hump is varied. As the distance of the hump from the leading edge is reduced, the sound pressure level decreases.


Sign in / Sign up

Export Citation Format

Share Document