Pulsating minimum quantity lubrication assisted high speed turning on bio-medical Ti-6Al-4V ELI Alloy: An experimental investigation

2020 ◽  
Vol 21 (6) ◽  
pp. 625
Author(s):  
Ramanuj Kumar ◽  
Ashok Kumar Sahoo

Machining of bio-medical Ti-6Al-4V ELI grade is categorized in difficult to cut metal alloys due to its lower thermal conductivity and highly reactive in nature at elevated temperature. However, to improve the machinability of this alloy, controlling the temperature during cutting action is a challenging task. On this context, current work introduced a novel cooling strategy named as pulsating minimum quantity lubrication technique to investigate the surface roughness, surface texture (surface topology, surface profile, amplitude distribution curve, Bearing area curve, and Power spectrum), tool-work temperature, and flank wear in high-speed CNC turning of Ti-6Al-4V ELI Alloy. Feed is the leading influencing term towards surface roughness, pulse time contributing the highest impact towards tool-work temperature while flank wear is largely influenced by cutting speed. Abrasion, notch wear, adhesion and diffusion mode of wear is found.

Author(s):  
Lalatendu Dash ◽  
Smita Padhan ◽  
Anshuman Das ◽  
Sudhansu Ranjan Das

The present research addresses the machinability of hardened die steel (AISI D3, 61HRC) in hard turning using multilayer (TiCN/Al2O3/TiN) coated carbide tool under nanofluid based minimum quantity lubrication-cooling condition, where no previous data are available. Power consumption, flank wear, chip morphology and surface integrity (microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness) are considered as technological performance characteristics to evaluate the machinability. Combined approach of central composite design - analysis of variance, response surface methodology and desirability function analysis have been employed respectively for experimental investigation, predictive modelling and multi-response optimization. With a motivational philosophy of “Go Green-Think Green-Act Green”, the work also deals with energy saving carbon footprint analysis and sustainability assessment to recognize the green manufacturing in the context of safer and cleaner production. under environmental-friendly nanofluid assisted minimum quantity lubrication condition. The quantitative analysis revealed that the cutting speed influenced the power consumption during hard machining (75.78%) and flank wear of coated carbide tool (45.67%); feed rate impacted the surface finish of the machined part (68.8%) significantly. Saw tooth shapes of chip produced due to cyclic cracking. Due to low percentage contribution of error (5.32% to Ra, 6.64% to VB, and 7.79% to Pc), a higher correlation coefficient (R2) was obtained with the quadratic regression model, which showed values of 0.9, 0.88 and 0.92 for surface roughness, flank wear, and power consumption, respectively. Optimization with the highest desirability (0.9173) resulted the optimum machining conditions under NFMQL at the cutting speed of 57 m/min, depth of cut 0.1 mm, feed of 0.07 mm/rev, and insert’s nose radius of 0.4 mm. As a result, under NFMQL tool life was improved by 30.8% and 22.6% in respect of flank wear and surface roughness respectively than when machining with MQL technique by adapting the optimum machining condition. Therefore, using hard nanoparticles-reinforced cutting fluid under minimum quantity lubrication condition in practical manufacturing becomes very promising to improve sustainability.


Author(s):  
Zengqiang Wang ◽  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Kunyang Lin ◽  
...  

Abstract High speed cutting (HSC) technology has the characteristics of high material removal rates and high machining precision. In order to study the relationships between chip morphology and machining surface characteristic in high speed cutting of superalloy Inconel718. High-speed orthogonal cutting experiment are carried out by used a high speed cutting device based on split Hopkinson pressure bar (SHPB). The specimen surfaces and collected chips were then detected with optical microscope, scanning electron microscope and three-dimensional surface profile measuring instrument. The results show that within the experimental parameters (cutting speed from 8–16m/s, depth of cut 0.1–0.5mm), the obtained chips are sawtooth chips and periodic micro-ripple appear on the machined surface. With the cutting speed increases, machining surface roughness is decreases from 1.4 to 0.99μm, and the amplitude of periodic ripples also decreases. With the cutting depth increases, the machining surface roughness increases from 0.96 to 5.12μm and surface topography becomes worse. With the increase of cutting speed and depth of cut, the chips are transform from continues sawtooth to sawtooth fragment. By comparing the frequency of surface ripples and sawtooth chips, it is found that they are highly consistent.


2016 ◽  
Vol 16 (2) ◽  
pp. 75-88 ◽  
Author(s):  
Munish Kumar Gupta ◽  
P. K. Sood ◽  
Vishal S. Sharma

AbstractIn the present work, an attempt has been made to establish the accurate surface roughness (Ra, Rq and Rz) prediction model using response surface methodology with Box–Cox transformation in turning of Titanium (Grade-II) under minimum quantity lubrication (MQL) conditions. This surface roughness model has been developed in terms of machining parameters such as cutting speed, feed rate and approach angle. Firstly, some experiments are designed and conducted to determine the optimal MQL parameters of lubricant flow rate, input pressure and compressed air flow rate. After analyzing the MQL parameter, the final experiments are performed with cubic boron nitride (CBN) tool to optimize the machining parameters for surface roughness values i. e., Ra, Rq and Rz using desirability analysis. The outcomes demonstrate that the feed rate is the most influencing factor in the surface roughness values as compared to cutting speed and approach angle. The predicted results are fairly close to experimental values and hence, the developed models using Box-Cox transformation can be used for prediction satisfactorily.


In this study an experimental investigation of effects of cutting parameters on surface roughness during drilling of silicon carbide particulate reinforced aluminium matrix composite material under minimum quantity lubrication (MQL) condition was carried out. Cutting speed , feed rate, flow rate and % SiC in aluminium matrix composites were chosen as cutting parameters. The experimental design adopted for this investigation was the central composite design of response surface methodology. Thirty one readings were taken on VMC machine for MQL condition and the surface roughness measured using Mitutoyo surface tester. Surface roughness values for MQL condition were lower with 30% SiC reinforced aluminium matrix composites when compared to 10 % and 20 % SiC reinforced aluminium matrix composites . As cutting speed increased Ra & Rz value also increased .% SiC was found most significant factor while drilling aluminium matrix composites.


2010 ◽  
Vol 34-35 ◽  
pp. 1816-1821 ◽  
Author(s):  
Yu Su ◽  
Ning He ◽  
Liang Li

Cryogenic minimum quantity lubrication (CMQL) is a kind of green cooling/lubrication technique, which consists of the application of a small amount of lubricant (6-100 ml/h), delivered in a refrigerated compressed gas stream to the cutting zone. This paper experimentally investigates the effect of CMQL on cutting temperature and tool wear in high-speed end milling of titanium alloys. Comparative experiments were conducted under different cooling/lubrication conditions, i.e. dry milling, refrigerated air cutting, and CMQL. The refrigerated gas equipment was manufactured based on composite refrigeration method to provide the refrigerated air. The experimental results show that application of CMQL resulted in drastic reduction in cutting temperature and tool wear especially when machining titanium alloys at a high cutting speed.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Kyung-Hee Park ◽  
Brent Ewald ◽  
Patrick Y. Kwon

Minimum quantity lubrication (MQL) has been used as an alternative solution for flood cooling as well as dry machining. However, the benefit of MQL is only realized in mild machining conditions as the heat generation during more aggressive machining conditions cannot be effectively eliminated by the small amount of oil mist being applied during MQL process. To extend the applicability of MQL to more aggressive machining conditions, we have developed a potential additive to MQL lubricant. After the preliminary wetting angle measurement of the various lubricants, one commercially available MQL vegetable oil was chosen, which is then mixed in a high-speed mixer with exfoliated nanographene particles. The resulting nanoenhanced MQL lubricant was evaluated for its tribological and machining behaviors together with the suspension stability of the mixture. Friction coefficients of new nanoenhanced MQL oil were also measured in terms of loads, speeds and lubricants. Finally, MQL-ball milling tests with nanographene enhanced lubricant were performed to show a remarkable performance improvement in reducing both central wear and flank wear as well as edge chipping at cutting edge.


2019 ◽  
Vol 2019 (04) ◽  
pp. 3364-3372
Author(s):  
X.J. Wang ◽  
M.K. Gupta ◽  
Q. Song ◽  
Z. Liu ◽  
C.I. Pruncu ◽  
...  

Author(s):  
M. Naresh Babu ◽  
V. Anandan ◽  
M. Dinesh Babu ◽  
N. Muthukrishnan

The influence of lubrication has an effect on health, surroundings, and manufacturing regions. In the current analysis, the impact of turning parameters such as cutting speed, feed rate and cutting conditions on surface roughness (Ra), cutting temperature, tool wear, and chip morphology are examined on SKD 11 steel. The experiments were performed with Taguchi's L18 orthogonal-array. The significance of the investigation involved in comparing the effect of dry, oil machining, and nano lubricants with minimum quantity lubrication (MQL) in turning process. Additionally, simple additive weighting method (SAW) has been utilized to enhance the turning parameters in SKD 11 steel for improved machining performance. Results indicate that the use of nanoparticles as cutting fluids serve in reducing the surface roughness, cutting temperature, and wear on the tool.


2009 ◽  
Vol 407-408 ◽  
pp. 612-615 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Hiroyuki Sasahara

Nowadays, an increase on demands of aerospace components has led to implementation of high speed machining (HSM). The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and of course, reliability. However, when HSM is coupled with dry or near dry machining, it will present considerable technical challenges to the manufacturing sector especially when the integrity of the machined surface is concerned. In this investigation, the effect of high speed drilling (HSD) conditions on the performance and surface integrity of Inconel 718 were studied. Hole was drilled individually using TiAlN coated carbide insert drill (14 mm in diameter) under minimum quantity of lubrication (MQL) condition. Results showed that uniform flank wear and chipping were the dominant tool failure modes. Moreover, the results showed an increase in cutting temperature with increasing cutting speed and feed rate. Thrust force and torque decreased linearly with the increasing cutting speed but significantly increased when higher feed rate is employed. Cutting speed significantly influenced the distribution of surface roughness value. Variations of hardness readings were recorded beneath the machined surfaces, they were due to the hardening effects caused by concentration of high temperature and stresses on the workpiece.


Sign in / Sign up

Export Citation Format

Share Document