scholarly journals Lipopolysaccharides: structure, function and bacterial identification

OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 31
Author(s):  
Martine Caroff ◽  
Alexey Novikov

Lipopolysaccharides (LPS) are the main components of the outer membrane of Gram-negative bacteria. They are glycolipids containing a lipid moiety called lipid A, more often made of a bis-phosphorylated glucosamine disaccharide, carrying fatty acids in ester and amide linkages. Lipid A is linked to a core oligosaccharide of about 10 sugars, substituted in the wild-type strains, by long-chain oligosaccharide repetitive units, extending outside the bacteria and representing their main antigens. In addition to determine the serotype of the bacterium, LPS are highly potent biological molecules, capable of eliciting at the level of minute amounts, beneficial, as well as deleterious activities.

Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 761-776 ◽  
Author(s):  
Lori A Rinckel ◽  
David J Garfinkel

Abstract In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A Δhta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a Δhta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the Δhta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1776
Author(s):  
Mourdas Mohamed ◽  
Nguyet Thi-Minh Dang ◽  
Yuki Ogyama ◽  
Nelly Burlet ◽  
Bruno Mugat ◽  
...  

Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurately recover TE insertion (TEI) sites and sequences from long reads obtained by Oxford Nanopore Technology (ONT) sequencing. With this pipeline, we could precisely describe the landscapes of the most recent TEIs in wild-type strains of Drosophila melanogaster and Drosophila simulans. Their comparison suggests that this subset of TE sequences is more similar than previously thought in these two species. The chromosome assemblies obtained using this pipeline also allowed recovering piRNA cluster sequences, which was impossible using short-read sequencing. Finally, we used our pipeline to analyze ONT sequencing data from a D. melanogaster unstable line in which LTR transposition was derepressed for 73 successive generations. We could rely on single reads to identify new insertions with intact target site duplications. Moreover, the detailed analysis of TEIs in the wild-type strains and the unstable line did not support the trap model claiming that piRNA clusters are hotspots of TE insertions.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Mei-Ling Han ◽  
Yan Zhu ◽  
Darren J. Creek ◽  
Yu-Wei Lin ◽  
Dovile Anderson ◽  
...  

ABSTRACTMultidrug-resistantPseudomonas aeruginosapresents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance inP. aeruginosahas been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistantP. aeruginosastrains using untargeted metabolomics and lipidomics analyses. The metabolomes of wild-typeP. aeruginosastrain K ([PAK] polymyxin B MIC, 1 mg/liter) and its pairedpmrBmutant strains, PAKpmrB6and PAKpmrB12(polymyxin B MICs of 16 mg/liter and 64 mg/liter, respectively) were characterized using liquid chromatography-mass spectrometry, and metabolic differences were identified through multivariate and univariate statistics. PAKpmrB6and PAKpmrB12, which displayed lipid A modifications with 4-amino-4-deoxy-l-arabinose, showed significant perturbations in amino acid and carbohydrate metabolism, particularly the intermediate metabolites from 4-amino-4-deoxy-l-arabinose synthesis and the methionine salvage cycle pathways. The genomics result showed a premature termination (Y275stop) inspeE(encoding spermidine synthase) in PAKpmrB6, and metabolomics data revealed a decreased intracellular level of spermidine in PAKpmrB6compared to that in PAKpmrB12. Our results indicate that spermidine may play an important role in high-level polymyxin resistance inP. aeruginosa. Interestingly, bothpmrBmutants had decreased levels of phospholipids, fatty acids, and acyl-coenzyme A compared to those in the wild-type PAK. Moreover, the more resistant PAKpmrB12mutant exhibited much lower levels of phospholipids than the PAKpmrB6mutant, suggesting that the decreased phospholipid level was associated with polymyxin resistance. In summary, this study provides novel mechanistic information on polymyxin resistance inP. aeruginosaand highlights its impacts on bacterial metabolism.


2004 ◽  
Vol 72 (12) ◽  
pp. 7124-7130 ◽  
Author(s):  
Lyndsay M. Schaeffer ◽  
Francis X. McCormack ◽  
Huixing Wu ◽  
Alison A. Weiss

ABSTRACT Surfactant proteins A (SP-A) and D (SP-D) play an important role in the innate immune defenses of the respiratory tract. SP-A binds to the lipid A region of lipopolysaccharide (LPS), and SP-D binds to the core oligosaccharide region. Both proteins induce aggregation, act as opsonins for neutrophils and macrophages, and have direct antimicrobial activity. Bordetella pertussis LPS has a branched core structure and a nonrepeating terminal trisaccharide. Bordetella bronchiseptica LPS has the same structure, but lipid A is palmitoylated and there is a repeating O-antigen polysaccharide. The ability of SP-A and SP-D to agglutinate and permeabilize wild-type and LPS mutants of B. pertussis and B. bronchiseptica was examined. Previously, wild-type B. pertussis was shown to resist the effects of SP-A; however, LPS mutants lacking the terminal trisaccharide were susceptible to SP-A. In this study, SP-A was found to aggregate and permeabilize a B. bronchiseptica mutant lacking the terminal trisaccharide, while wild-type B. bronchiseptica and mutants lacking only the palmitoyl transferase or O antigen were resistant to SP-A. Wild-type B. pertussis and B. bronchiseptica were both resistant to SP-D; however, LPS mutants of either strain lacking the terminal trisaccharide were aggregated and permeabilized by SP-D. We conclude that the terminal trisaccharide protects Bordetella species from the bactericidal functions of SP-A and SP-D. The O antigen and palmitoylated lipid A of B. bronchiseptica play no role in this resistance.


1995 ◽  
Vol 73 (7) ◽  
pp. 1001-1009 ◽  
Author(s):  
Zamir K. Punja

Three strains of Chalara elegans from diverse geographical areas that contained multiple (4 or 5) double-stranded RNA fragments were compared with spontaneously derived cultures from these strains that were either partially cured or completely free of dsRNA. In the wild-type strains, presence of the dsRNAs was found to significantly enhance phialospore production and pigmentation of colonies, whereas radial growth and mycelial dry weight accumulation were reduced. The rate and overall percentage of phialospore germination on 1% Noble water agar were also significantly reduced by the presence of the dsRNAs. In two partially cured strains (only one 2.8-kb fragment remaining), pathogenicity to various plant tissues was significantly enhanced when compared with the wild-type strains containing multiple dsRNA. However, survival in field soil was enhanced in one strain and reduced in the other. In the completely cured strain, the loss of multiple dsRNA fragments was associated with enhanced growth, reduced phialospore production, and a complete loss of pathogenicity and capability for survival in soil. These results indicate that the effects of dsRNAs in C. elegans vary with the strain. In general, the presence of multiple dsRNAs in this fungus enhanced sporulation, altered colony morphology, and reduced growth and pathogenicity. However, since the complete loss of dsRNA was found to eliminate pathogenicity and reduce survival, it suggests that some dsRNA fragments in C. elegans may confer an advantage to this soil-borne facultative plant pathogen. Key words: black root rot, soil-borne plant pathogen, Thielaviopsis basicola.


Author(s):  
Elena Martín-Clemente ◽  
Ignacio J. Melero-Jiménez ◽  
Elena Bañares-España ◽  
Antonio Flores-Moya ◽  
María J. García-Sánchez

AbstractSulphide is proposed to have influenced the evolution of primary stages of oxygenic photosynthesis in cyanobacteria. However, sulphide is toxic to most of the species of this phylum, except for some sulphide-tolerant species showing various sulphide-resistance mechanisms. In a previous study, we found that this tolerance can be induced by environmental sulphidic conditions, in which two experimentally derived strains with an enhanced tolerance to sulphide were obtained from Microcystis aeruginosa, a sensitive species, and Oscillatoria, a sulphide-tolerant genus. We have now analysed the photosynthetic performance of the wild-type and derived strains in the presence of sulphide to shed light on the characteristics underlying the increased tolerance. We checked whether the sulphide tolerance was a result of higher PSII sulphide resistance and/or the induction of sulphide-dependent anoxygenic photosynthesis. We observed that growth, maximum quantum yield, maximum electron transport rate and photosynthetic efficiency in the presence of sulphide were less affected in the derived strains compared to their wild-type counterparts. Nevertheless, in 14C photoincoporation assays, neither Oscillatoria nor M. aeruginosa exhibited anoxygenic photosynthesis using sulphide as an electron donor. On the other hand, the content of photosynthetic pigments in the derived strains was different to that observed in the wild-type strains. Thus, an enhanced PSII sulphide resistance appears to be behind the increased sulphide tolerance displayed by the experimentally derived strains, as observed in most natural sulphide-tolerant cyanobacterial strains. However, other changes in the photosynthetic machinery cannot be excluded.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 646
Author(s):  
Rossella Di Guida ◽  
Angela Casillo ◽  
Antonietta Stellavato ◽  
Celeste Di Meo ◽  
Soichiro Kawai ◽  
...  

Lipopolysaccharides (LPS) are surface glycoconjugates embedded in the external leaflet of the outer membrane (OM) of the Gram-negative bacteria. They consist of three regions: lipid A, core oligosaccharide (OS), and O-specific polysaccharide or O-antigen. Lipid A is the glycolipid endotoxin domain that anchors the LPS molecule to the OM, and therefore, its chemical structure is crucial in the maintenance of membrane integrity in the Gram-negative bacteria. In this paper, we reported the characterization of the lipid A and OS structures from Pseudoalteromonas nigrifaciens Sq02-Rifr, which is a psychrotrophic Gram-negative bacterium isolated from the intestine of Seriola quinqueradiata. The immunomodulatory activity of both LPS and lipid A was also examined.


2018 ◽  
Vol 72 ◽  
pp. 573-586
Author(s):  
Eva Krzyżewska ◽  
Jacek Rybka

The outer membrane of Gram-negative bacteria is a biological structure with a unique composition that significantly contributes to the survival of bacteria in the unfavorable conditions of the host organism. The lipopolysaccharide constitutes about 70% of the external part of the outer membrane. The LPS molecule is composed of three different parts: lipid A, core oligosaccharide and O antigen. Despite the O-specific antigen being one of the most intensely studied surface structures of bacterial polysaccharides, a number of questions regarding the mechanism of the O antigen biosynthesis and its transport to the cell surface are still unanswered. The paper describes the biosynthesis of the lipopolysaccharide molecule, with particular emphasis on the O-specific chain biosynthesis, the mechanism of lipopolysaccharide length regulation and the influence of the type of synthesized O-specific chains on bacterial survival in adverse host organisms.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Johnny X. Huang ◽  
Mohammad A. K. Azad ◽  
Elizabeth Yuriev ◽  
Mark A. Baker ◽  
Roger L. Nation ◽  
...  

The ability of AGP to bind circulating lipopolysaccharide (LPS) in plasma is believed to help reduce the proinflammatory effect of bacterial lipid A molecules. Here, for the first time we have characterized human AGP binding characteristics of the LPS from a number of pathogenic Gram-negative bacteria:Escherichia coli,Salmonella typhimurium,Klebsiella pneumonia,Pseudomonas aeruginosa, andSerratia marcescens. The binding affinity and structure activity relationships (SAR) of the AGP-LPS interactions were characterized by surface plasma resonance (SPR). In order to dissect the contribution of the lipid A, core oligosaccharide andO-antigen polysaccharide components of LPS, the AGP binding affinity of LPS from smooth strains, were compared to lipid A, Kdo2-lipid A,Ra,Rd, andRerough LPS mutants. The SAR analysis enabled by the binding data suggested that, in addition to the important role played by the lipid A and core components of LPS, it is predominately the unique species- and strain-specific carbohydrate structure of theO-antigen polysaccharide that largely determines the binding affinity for AGP. Together, these data are consistent with the role of AGP in the binding and transport of LPS in plasma during acute-phase inflammatory responses to invading Gram-negative bacteria.


2007 ◽  
Vol 75 (6) ◽  
pp. 2765-2775 ◽  
Author(s):  
Rachel Balder ◽  
Jonathan Hassel ◽  
Serena Lipski ◽  
Eric R. Lafontaine

ABSTRACT Two-partner secretion (TPS) systems are a family of proteins being rapidly identified and characterized in a growing number of gram-negative bacteria. TPS systems mediate the secretion of proteins, many involved in virulence traits such as hemolysis, adherence to epithelial cells, inhibition of bacterial growth, and immunomodulation of the host. A TPS system typically consists of a transporter located in the bacterial outer membrane (OM) which is responsible for the recognition and secretion of at least one large exoprotein. Two of the better-characterized TPS systems specify the Bordetella pertussis FHA and Haemophilus influenzae HMW1/HMW2 proteins. We identified three gene products of Moraxella catarrhalis strain O35E that resemble TPS proteins and designated them MhaC (transporter), MhaB1 (exoprotein), and MhaB2 (exoprotein). Western blot analysis using anti-MhaC, or antibodies reacting to both MhaB1 and MhaB2 (MhaB-reactive), revealed that these antigens are expressed in the OM of 63% of isolates tested. Mutations in the mhaC gene specifying the putative transporter of the M. catarrhalis wild-type strains O35E, O12E, and McGHS1 resulted in the absence of MhaB1/MhaB2 in the OM of mutants. These results are therefore consistent with the Mha proteins functioning as a TPS system. Furthermore, we discovered that these mhaC mutants exhibit markedly decreased binding to human epithelial cells relevant to pathogenesis by M. catarrhalis (Chang, HEp2, A549, and/or 16HBE14o−). Expression of O12E MhaC and MhaB1 in a nonadherent strain of Escherichia coli was found to increase the adherence of recombinant bacteria to HEp2 monolayers by sevenfold, thereby demonstrating that this M. catarrhalis TPS system directly mediates binding to human epithelial cells. The construction of isogenic mutants in the mhaB1 and mhaB2 genes of strain O35E also suggests that the MhaB proteins play distinct roles in M. catarrhalis adherence.


Sign in / Sign up

Export Citation Format

Share Document