scholarly journals Impact of cutting parameters on machining of Ti-6Al-4V alloy: an experimental and FEM approach

Author(s):  
Kathirvel Gobivel ◽  
Krishnaraju Srinivasaraju Vijaysekar ◽  
Gopalakrishnan Prabhakaran

Titanium alloys are used as an aerospace material due to their inherent properties such as high strength to weight ratio, corrosion, and fracture resistance. However, the low conductivity and reactivity towards plastic deformation causes these materials to be difficult to cut category. The prediction of various parameters like chip formation and actual cutting forces are important factors for better machinability which involves lot of resources. To overcome such issues, this work proposes three-dimensional FE approach to simulate the machinability behavior of Ti-6Al-4V especially on conventional turning. The impact of cutting speed and feed rate on the cutting force, thrust force, feed force and surface roughness were analyzed experimentally for various conditions. The predicted machining forces showed strong correlation with the experimental results and the effective von mises stress were examined.

2018 ◽  
Vol 183 ◽  
pp. 01031
Author(s):  
Pietro del Sorbo ◽  
Jeremie Girardot ◽  
Frederic Dau ◽  
Ivan Iordanoff

Dry fabrics comprised of high performance polymeric fibers have been widely used as protection layers in structures submitted to high velocity impacts (HVI). Their outstanding impact energy dissipation ability combined with an high strength-to-weight ratio make them a preferable choice in different applications such as bullet vests or blade containment systems over standard materials. Among the different approaches adopted to study these structures numerical methods assume a central role. Thanks to their reduced costs and the related possibility of evaluating the effects of single phenomena, they are often used to predict the structure ballistic limits or to study the physical events which occur during the penetration. Among the different strategies adopted to model a fabric, mesoscopic models have been largely adopted by different authors. These models assume the yarns as a continuum body while the fabric geometry is explicitly described. Nowadays yarn material models are universally assumed to be linear elastic and orthotropic. This modelling approach mostly focuses on the longitudinal behaviour of the yarn, however fiber-scale analyses and experimental results shows the importance of three-dimensional stress state on the ballistic limit. In order to obtain a three-dimensional description of the yarn strain state during the impact, a novel hyperelastic model for yarn structures here is developed. In a first step, fiber-level preliminary analyses have been performed to obtain the effective behaviour of these structure under the projectile collision. In the second step, the hyperelastic model has been implemented and identified thanks to microscopic elementary tests. Finally, a continuum model of the yarn have been performed. First results show the relevance of the hyperelastic model compared to the fiber-level observation and enhance the limit of the classical linear elastic material model.


2017 ◽  
Vol 62 (3) ◽  
pp. 1771-1777 ◽  
Author(s):  
Y. Allwin Roy ◽  
K. Gobivel ◽  
K.S. Vijay Sekar ◽  
S. Suresh Kumar

AbstractCarbon fiber reinforced polymeric (CFRP) composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM) of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces) and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.


2020 ◽  
Vol 61 (2) ◽  
pp. 143-150
Author(s):  
Yanqing Zhang ◽  
Qingliang Cui ◽  
Hongbo Li ◽  
Zhiyong Zhang ◽  
Yongqiang He ◽  
...  

In order to find the variations of mechanical properties of millet stalk during dynamic cutting, a three-dimensional model of cutting parts and a double-layer flexible model of millet stalk were established in this study. The mechanical cutting properties of millet stalk at different cutting speeds and blade oblique angles were investigated based on ANSYS/LS-DYNA, while the verification tests were carried out based on the self-made cutting test bench. Simulation results showed that the maximum Von Mises stress was concentrated on the contact point of the stalk and the moving blade. The maximum Von Mises stress of stalk during extrusion, cutting, and after cutting were 60.03 MPa, 60.72 MPa, and 39.87 MPa, respectively, and the cutting energy of stalk epidermal tissue was greater than that of inner tissue. The cutting stress and the unit area cutting energy decreased first and changed steadily as cutting speed was increased when the cutting speed was 0.5-1.5 m/s. When the blade oblique angle was 0°-48°, the cutting stress decreased as the blade oblique angle was increased, while the unit area cutting energy decreased first and then increased. Verification tests showed that the cutting speed and the blade oblique angle had significant effects on the cutting mechanical properties (P < 0.05), which was consistent with the simulation test results. Research results can be used to optimize the cutting parameters of millet stalk


Author(s):  
Amel Boukhlif ◽  
Ali Merdji ◽  
Noureddine Della ◽  
El Bahri Ould Chikh ◽  
Osama Mukdadi ◽  
...  

The number of supporting dental implants is an important criterion for the surgical outcome of dental bridge fixation, which has considerable impact on biomechanical load transfer characteristics. Excessive stress at the bone–implant interface by masticatory loading may result in implant failure. The aim of this study was to evaluate the impact of the number of implants supporting the dental bridge on stress in neighboring tissues around the implants. Results of the study will provide useful information on appropriate surgical techniques for dental bridge fixation. In this study, osseointegrated smooth cylindrical dental implants of same diameter and length were numerically analyzed, using three-dimensional bone–implant models. The effect of the number of supporting implants on biomechanical stability of dental bridge was examined, using two, three and four supporting implants. All materials were assumed to be linearly elastic and isotropic. Masticatory load was applied in coron-apical direction on the external part of dental bridge. Finite Element (FE) analyses were run to solve for von Mises stress. Maximum von Mises stresses were located in the cervical line of cortical bone around dental implants. Peak von Mises stress values decreased with an increase in the number of implants that support the dental bridge. Results of this study demonstrate the importance of using the correct number of supporting implants to for dental bridge fixation.


Author(s):  
Raghu Prakash ◽  
Hithesh Channegowda ◽  
Anandavel Kaliyaperumal

Aero-engine fan blades are the critical components that are vulnerable to Foreign Object Damage (FOD) such as bird impact. The thrust loss due to bird impact can affect engine core function, resulting in catastrophic failure. The fan blades should be designed to have adequate resistance to bird impact. The present paper focuses on numerical evaluation of bird impact response on shrouded and un-shrouded rotating set of fan blades using three dimensional computational methodology. The impact response is compared between shrouded and un-shrouded blades in terms of deformation, von-Mises stress, plastic strain, and energy absorbed. Numerical analysis results indicate that the shrouded fan blade absorbs 35 % more energy compared to un-shrouded blade. Deformation damage at impact location of shrouded blade is lesser compared to un-shrouded blade. The maximum plastic strain observed on shrouded blade due to bird impact is also 50 % lesser than the un-shrouded blade. The study suggests that the shrouded fan blades provide better impact resistance characteristics to bird impact compared to un-shrouded fan blades.


2014 ◽  
Vol 984-985 ◽  
pp. 42-47
Author(s):  
J. Nithyanandam ◽  
Sushil Laldas ◽  
K. Palanikumar

Titanium is one of the important kinds of material used in different engineering fields. They have very good properties like high strength to weight ratio, superior corrosion resistance and thermal properties. They are very attractive materials and has application aerospace, biomedical and automotive field. they are classified to be “difficult-to-Machine materials” as they posses poor thermal properties, poor machinability, etc.The prime important is with the study of machining characteristics and the optimization of the cutting parameters. In this paper Titanium alloy (Ti-6Al-4V) is taken, the dry turning experiments are carried out in semi-automatic lathe using poly crystalline diamond (PCD) cutting tool insert. The taguchi’s design of L27orthogonal array is done by four machining factors namely cutting speed, feed, nose radius and depth of cut at three levels. The optimal machining conditions are arrived by Signal-Noise ratio method with respect to surface roughness (Ra). The analysis of variance (ANOVA) and the percentage of contribution of feed, cutting speed, nose radius and depth of cut for better surface roughness is validated using S/N ratio. In this result indicated that the feed is a vital parameter followed by cutting speed, the nose radius and then by depth of cut. The worn out surface of the insert is examined by using scanning electron microscope (SEM).


Author(s):  
Mohd Salahuddin Mohd Basri ◽  
Mohd Zuhair Mohd Nor ◽  
Rosnah Shamsudin ◽  
Intan Syafinaz Mohamed Amin Tawakkal ◽  
Nur Hamizah Abdul Ghani ◽  
...  

Paperboard box produced in large volume for packaging purpose either to pack light or heavy product. When a heavy product is packed, high strength and structural stability against compression and deformation of the paperboard box are demanded. This paper investigates the effects of different shape of fluting mediums on the von Mises stress and deformation using finite element analysis (FEA) tool. Solidworks and ANSYS software were used to design a 3-D model and perform static structural analysis, respectively. The result from the analysis and simulation revealed that common s-shape geometry experienced the lowest von Mises stress and deformation. Honeycomb geometry experienced the highest von Mises stress of 0.19576 MPa while triangle fluting medium recorded the highest deformation at 1.8695E-4mm.


2014 ◽  
Vol 59 (2) ◽  
pp. 467-471 ◽  
Author(s):  
B. Işik ◽  
A. Kentli

Abstract Titanium and its alloys are attractive materials due to their unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. However, the focus shift of market trends from military to commercial and aerospace to industry also been reported. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. These properties limit the use of these materials especially in the markets where cost is much more of a factor than in aerospace. Machining is an important manufacturing process because it is almost always involved if precision is required and is the most effective process for small volume production. Due to the low machinability of the alloys under study, selecting the machining conditions and parameters is crucial. The range of feeds and cutting speeds, which provide a satisfactory tool life, is very limited. On the other hand, adequate tool, coating, geometry and cutting flow materials should be used: otherwise, the high wear of the tool, and the possible tolerance errors, would introduce unacceptable flaws in parts that require a high degree of precision. In this study, heat changes of Ti6Al4V has been examined on the basis of cutting parameters such as depth of cut, feedrate and cutting speed during drilling. Heat changes of the material and tool was monitored by a thermal camera. Maximum temperatures of the experiments were taken to examine optimum cutting parameters. Obtained results have been used to generate a regression analysis and it is seen that regression has given accurate data.


2011 ◽  
Vol 148-149 ◽  
pp. 374-379
Author(s):  
Long Bai ◽  
Tao Wang ◽  
Xi Bin Wang ◽  
Jian Jun Chen

The present paper demonstrates a study of the impact of cutting condition on turning high strength steel 34CrNiMo6. Based on Taguchi method, a plan of experiments was performed with ceramic cutting insert. The first and second cutting force equations are developed through the response surface methodology (RSM) to investigate the effect of input cutting parameters (cutting speed, feed rate and depth) on cutting force. In term of input parameters, the cutting force contours are showed and the analysis of the predicted models is performed with aid of the statistical software package. In addition, the separate influence of individual cutting parameter and the interaction between these factors are also discussed in this study. In general, the results obtained from the mathematical model agree well with the experimental data.


2014 ◽  
Vol 543-547 ◽  
pp. 3759-3763
Author(s):  
Lin Lin Wang ◽  
Li Jiao ◽  
Zhi Wen Luo ◽  
Liang Jun Wei

In order to investigate the impact of cutting parameters on surface integrity when high-speed turning 58SiMn without cutting fluid, three-factor three-level orthogonal experiments and single factor experiments based on cutting speed and feed rate are employed, and an empirical model is established. The results of analysis of variance (ANOVA) revealed that feed rate is the dominant factor affecting the surface roughness. With the increase of cutting speed and feed rate, residual tensile stress on the surface becomes larger. Along the depth, micro hardness first decreases and then increases.


Sign in / Sign up

Export Citation Format

Share Document