scholarly journals Positioning performance of the NTCM model driven by GPS Klobuchar model parameters

2018 ◽  
Vol 8 ◽  
pp. A20 ◽  
Author(s):  
Mohammed Mainul Hoque ◽  
Norbert Jakowski ◽  
Jens Berdermann

Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.

2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Angela Aragon-Angel ◽  
Adria Rovira-Garcia ◽  
Enrique Arcediano-Garrido ◽  
Deimos Ibáñez-Segura

Users of the global navigation satellite system (GNSS) operating with a single-frequency receiver must use an ionospheric correction algorithm (ICA) to account for the delay introduced on radio waves by the upper atmosphere. Galileo, the European GNSS, uses an ICA named NeQuick-G. In an effort to foster the adoption of NeQuick-G by final users, two implementations in C language have been recently made available to the public by the European Space Agency (ESA) and the Joint Research Centre (JRC) of the European Commission (EC), respectively. The aim of the present contribution is to compare the slant total electron content (STEC) predictions of the two aforementioned implementations of NeQuick-G. For this purpose, we have used actual multi-constellation and multi-frequency data for several hundreds of stations distributed worldwide belonging to the Multi GNSS Experiment (MGEX) network of the International GNSS Service (IGS). For each first day of the month during year 2019, the STECs of the two NeQuick-G versions were compared in terms of accuracy, consistency, availability, and execution time. Our study concludes that both implementations of NeQuick-G perform equivalently. Indeed, in over 99.998% of the 2125 million STECs computed, the output is exactly coincident. In contrast, 0.002% of the whole set of STECs for those rays are tangent to the Earth, the behavior of both implementations differs. We confirmed the discrepancy by processing radio-occultation actual measurements from a COSMIC-2 low Earth orbit satellite. We selected the JRC version of the Galileo ICA to be integrated into the GNSS LABoratory (gLAB) tool suite, because its open license and its processing speed (it is 13.88% faster than the ESA version). NeQuick-G outperforms the GPS ICA in STEC residuals up to 12.15 TECUs (percentile 96.23th) and in the 3D position errors, up to 5.76 m (percentile 99.18th) for code-pseudorange positioning.


2021 ◽  
Vol 64 (4) ◽  
pp. RS440
Author(s):  
Aghyas Aljuneidi ◽  
Hala Tawfek Hasan

This paper focuses on the approximations that John A. Klobuchar made in mid 70s in his famous algorithm of ionospheric correction model for single frequency GPS receiver. At that time Klobuchar used a system of fixed geomagnetic north pole coordinates which are not accurate nowadays according to the International Geomagnetic Reference Field and to the World Magnetic Model because the geomagnetic poles move slowly. In addition, Klobuchar had to do other trigonometry simplifications in his implementation to avoid sophisticated computations. In order to evaluate this approximate implementation in a single frequency GPS receiver, ionospheric time and range delay are estimated on the entire day of January 1st 2010, using a different implementation in MATLAB. The required GPS data is obtained from recorded RINEX files at UDMC near DAMASCUS, SYRIA. In this comparative study, we reformulated the standard equations of Klobuchar model and examined the influence of its approximations on the ionospheric range delay and found a non- negligible bias in order of ten centimeters, whereas the influence of the movement of the geomagnetic poles was in order of few centimeters.


2019 ◽  
Vol 11 (4) ◽  
pp. 411 ◽  
Author(s):  
Zhixi Nie ◽  
Peiyuan Zhou ◽  
Fei Liu ◽  
Zhenjie Wang ◽  
Yang Gao

To meet the demands of civil aviation and other precise navigation applications, several satellite-based augmentation systems (SBASs) have been developed around the world, such as the Wide Area Augmentation System (WAAS) for North America, the European Geostationary Navigation Overlay Service (EGNOS) for Europe, the Multi-functional Satellite Augmentation System (MSAS) for Japan, the GPS (Global Positioning System) Aided GEO Augmented Navigation (GAGAN) for India, and the System for Differential Corrections and Monitoring (SDCM) for Russia. The SBASs broadcast messages to correct satellite orbit, clock, and ionosphere errors to augment the GPS positioning performance. In this paper, SBAS orbit, clock and ionospheric corrections are evaluated. Specifically, the orbit, clock and ionospheric corrections derived from SBAS messages are comprehensively evaluated using data collected from the above mentioned systems over 181 consective days. The evaluation indicates that the EGNOS outperforms other systems with signal-in-space range error (SISRE) at 0.645 m and ionospheric correction accuracy at 0.491 m, respectively. Meanwhile, the accuracy of SDCM is comparable to EGNOS with SISRE of 0.650 m and ionospheric correction accuracy of 0.523 m. For WAAS, the SISRE is 0.954 m and the accuracy of ionospheric correction is 0.505 m. The accuracies of the SBAS corrections from the MSAS and GAGAN systems, however, are significantly worse than those of others. The SISREs are 1.931 and 1.325 m and the accuracies of ionospheric corrections are 0.795 and 0.858 m, for MSAS and GAGAN, respectively. At the same time, GPS broadcast orbit, clock and ionospheric corrections are also evaluated. The results show that there are no significant improvements in the SISRE of the broadcast navigation data by applying SBAS corrections. On the other hand, the accuracy of SBAS ionospheric corrections is still much better than GPS broadcast ionospheric corrections, which could still be beneficial for single-frequency users.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2189 ◽  
Author(s):  
Qiong Wu ◽  
Mengfei Sun ◽  
Changjie Zhou ◽  
Peng Zhang

The update of the Android system and the emergence of the dual-frequency GNSS chips enable smartphones to acquire dual-frequency GNSS observations. In this paper, the GPS L1/L5 and Galileo E1/E5a dual-frequency PPP (precise point positioning) algorithm based on RTKLIB and GAMP was applied to analyze the positioning performance of the Xiaomi Mi 8 dual-frequency smartphone in static and kinematic modes. The results showed that in the static mode, the RMS position errors of the dual-frequency smartphone PPP solutions in the E, N, and U directions were 21.8 cm, 4.1 cm, and 11.0 cm, respectively, after convergence to 1 m within 102 min. The PPP of dual-frequency smartphone showed similar accuracy with geodetic receiver in single-frequency mode, while geodetic receiver in dual-frequency mode has higher accuracy. In the kinematic mode, the positioning track of the smartphone dual-frequency data had severe fluctuations, the positioning tracks derived from the smartphone and the geodetic receiver showed approximately difference of 3–5 m.


2021 ◽  
Author(s):  
Weiping Liu ◽  
Bo Jiao ◽  
Jinming Hao ◽  
Zhiwei Lv ◽  
Jiantao Xie ◽  
...  

Abstract Being the first mixed-constellation global navigation system, the global BeiDou navigation system (BDS-3) designs new signals, the service performance of which has attracted extensive attention. In the present study, the Signal-in-space range error (SISRE) computation method for different types of navigation satellites was presented. And the differential code bias (DCB) correction method for BDS-3 new signals was deduced. Based on these, analysis and evaluation were done by adopting the actual measured data after the official launching of BDS-3. The results showed that BDS-3 performed better than the regional navigation satellite system (BDS-2) in terms of SISRE. Specifically, the SISRE of the BDS-3 medium earth orbit (MEO) satellites reached 0.52 m, slightly inferior compared to 0.4 m from Galileo, marginally better than 0.57 m from GPS, and significantly better than 2.33 m from GLONASS. And the BDS-3 inclined geostationary orbit (IGSO) satellites achieved the SISRE of 0.90 m, on par with that of the QZSS IGSO satellites. However, the average SISRE of BDS-3 geostationary earth orbit (GEO) satellites was 1.15 m, which was marginally inferior to that of the QZSS GEO satellite (0.91m). In terms of positioning accuracy, the overall three-dimensional single-frequency standard point positioning (SPP) accuracy of BDS-3 B1C, B2a, B1I, and B3I gained an accuracy level better than 5 m. Moreover, the B1I signal exhibited the best positioning accuracy in the Asian-Pacific region, while the B1C signal set forth the best positioning accuracy in the other regions. Owing to the advantage in signal frequency, the dual-frequency SPP accuracy of B1C+B2a surpassed that of the transitional signal of B1I+B3I. Since there are more visible satellites in Asia-Pacific, the positioning accuracy of BDS-3 was moderately superior to that of GPS. The precise point positioning (PPP) accuracy of BDS-3 B1C+B2a or B1I+B3I converged to the order of centimeters, marginally inferior to that of the GPS L1+L2. However, these three combinations had a similar convergence time of approximately 30 minutes.


Author(s):  
Tsung Lee ◽  
Jhih-Syan Hou

In this chapter, the authors introduce a model expansion method that is used in a new methodology of model composition and evolution for broad design domains. In the methodology, hierarchical model compositional relationships are captured in a model composition graph (MCG) as a schema of designs. An MCG schema can be used as a blueprint for systematic and flexible evolution of designs with three hierarchical model refinement operations: expansion, synthesis, and configuration. In this methodology, due to the need of hierarchical sharing in software and hardware domains, the authors designed an algorithm to achieve conditional and recursive model expansion with hierarchical model instance sharing that is not achievable in other expansion methods. Hierarchical model instance sharing complicates the design structure from tree structures to graph structures. The model expansion algorithm was thus designed with enhanced features of maintenance of MCG instance consistency, path-based search of shared submodel instances, and dependency preserving expansion ordering. The expansion specification and the expansion process are integrated with the MCG-based methodology. Model parameters set by designers and other refinement operations can be used to guide each expansion step of design models iteratively.


Sign in / Sign up

Export Citation Format

Share Document