Expression Patterns of the Cell-cycle Inhibitor p27 and the Cell-cycle Promoter Cyclin E in the Human Placenta Throughout Gestation: Implications for the Control of Proliferation

Placenta ◽  
1999 ◽  
Vol 20 (5-6) ◽  
pp. 401-406 ◽  
Author(s):  
A.-M. Bamberger ◽  
S. Sudahl ◽  
C.M. Bamberger ◽  
H.M. Schulte ◽  
T. Löning
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4178-4178
Author(s):  
Jing Liu ◽  
Bi-Wei Shi ◽  
Ji-Liang Hu ◽  
Wei-Xin Hu

Abstract In previous studies we found that lycorine had broad antitumor effects and tumor cells were more sensitive to lycorine than non-tumor cells. We also showed that the mitochondrial and cell death receptor pathways were involved in lycorine-induced apoptosis of HL-60 cells. To further explore the molecular mechanism by which lycorine inhibits cell proliferation, the gene chip technique was used to detect the difference of gene expression patterns between 5.0 μM lycorine-treated HL-60 cells and control. The chip included 494 genes associated with apoptosis and proliferation. This data set revealed a significant change of 91 genes in expression, with 79 being up-regulated and 12 down-regulated. In particular the tumor suppressor gene p21 was up-regulated 9.3 folds in the lycorine-treated group. Consistent with this finding, RT-PCR and Western blotting confirmed the up-regulation of p21 gene and its protein in HL-60 cells treated with 5.0 μM lycorine for 24 h. The levels of p21 protein and its downstream cell cycle molecules Cdc2, Cdk2 and cyclin E were assessed after HL-60 cells were incubated with 0, 1.25, 2.5 and 5.0 μM lycorine. The results showed that the expression of Cdc2, Cdk2 and cyclin E was down-regulated, while that of p21 was up-regulated. Thus, lycorine could induce cell cycle arrest by interfering with cell cycle signaling pathways through up-regulation of p21 and concomitant down-regulation of Cdc2, Cdk2 and cyclin E in HL-60 cells.


Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
T Lüdtke ◽  
H Farin ◽  
C Rudat ◽  
K Schuster-Gossler ◽  
M Petry ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 929-935 ◽  
Author(s):  
Pradeep P. Kayampilly ◽  
K. M. J. Menon

FSH, acting through multiple signaling pathways, regulates the proliferation and growth of granulosa cells, which are critical for ovulation. The present study investigated whether AMP-activated protein kinase (AMPK), which controls the energy balance of the cell, plays a role in FSH-mediated increase in granulosa cell proliferation. Cells isolated from immature rat ovaries were grown in serum-free, phenol red free DMEM-F12 and were treated with FSH (50 ng/ml) for 0, 5, and 15 min. Western blot analysis showed a significant reduction in AMPK activation as observed by a reduction of phosphorylation at thr 172 in response to FSH treatment at all time points tested. FSH also reduced AMPK phosphorylation in a dose-dependent manner with maximum inhibition at 100 ng/ml. The chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, 0.5 mm) increased the cell cycle inhibitor p27 kip expression significantly, whereas the AMPK inhibitor (compound C, 20 μm) and FSH reduced p27kip expression significantly compared with control. FSH treatment resulted in an increase in the phosphorylation of AMPK at ser 485/491 and a reduction in thr 172 phosphorylation. Inhibition of Akt phosphorylation using Akt inhibitor VIII reversed the inhibitory effect of FSH on thr 172 phosphorylation of AMPK, whereas ERK inhibitor U0126 had no effect. These results show that FSH, through an Akt-dependent pathway, phosphorylates AMPK at ser 481/495 and inhibits its activation by reducing thr 172 phosphorylation. AMPK activation by 5-amino-imidazole-4-carboxamide-1-β-d-ribofuranoside treatment resulted in a reduction of cell cycle regulatory protein cyclin D2 mRNA expression, whereas FSH increased the expression by 2-fold. These results suggest that FSH promotes granulosa cell proliferation by increasing cyclin D2 mRNA expression and by reducing p27 kip expression by inhibiting AMPK activation through an Akt-dependent pathway. FSH stimulates granulosa cell proliferation by reducing cell cycle inhibitor p27 kip through AMP kinase inhibition.


2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


2016 ◽  
Vol 5 ◽  
pp. e304 ◽  
Author(s):  
Silvia Pierandrei ◽  
Andrea Luchetti ◽  
Massimo Sanchez ◽  
Giuseppe Novelli ◽  
Federica Sangiuolo ◽  
...  

1997 ◽  
Vol 17 (9) ◽  
pp. 5588-5597 ◽  
Author(s):  
A Sewing ◽  
B Wiseman ◽  
A C Lloyd ◽  
H Land

Activated Raf has been linked to such opposing cellular responses as the induction of DNA synthesis and the inhibition of proliferation. However, it remains unclear how such a switch in signal specificity is regulated. We have addressed this question with a regulatable Raf-androgen receptor fusion protein in murine fibroblasts. We show that Raf can cause a G1-specific cell cycle arrest through induction of p21Cip1. This in turn leads to inhibition of cyclin D- and cyclin E-dependent kinases and an accumulation of hypophosphorylated Rb. Importantly, this behavior can be observed only in response to a strong Raf signal. In contrast, moderate Raf activity induces DNA synthesis and is sufficient to induce cyclin D expression. Therefore, Raf signal specificity can be determined by modulation of signal strength presumably through the induction of distinct protein expression patterns. Similar to induction of Raf, a strong induction of activated Ras via a tetracycline-dependent promoter also causes inhibition of proliferation and p21Cip1 induction at high expression levels. Thus, p21Cip1 plays a key role in determining cellular responses to Ras and Raf signalling. As predicted by this finding we show that Ras and loss of p21 cooperate to confer a proliferative advantage to mouse embryo fibroblasts.


1997 ◽  
Vol 38 (24) ◽  
pp. 4327-4328 ◽  
Author(s):  
Haishan Wang ◽  
Arasu Ganesan

2003 ◽  
Vol 369 (2) ◽  
pp. 387-398 ◽  
Author(s):  
Jin ZHOU ◽  
Huong T. PHAM ◽  
Ralf RUEDIGER ◽  
Gernot WALTER

Protein phosphatase 2A (PP2A) is very versatile owing to a large number of regulatory subunits and its ability to interact with numerous other proteins. The regulatory A subunit exists as two closely related isoforms designated Aα and Aβ. Mutations have been found in both isoforms in a variety of human cancers. Although Aα has been intensely studied, little is known about Aβ. We generated Aβ-specific antibodies and determined the cell cycle expression, subcellular distribution, and metabolic stability of Aβ in comparison with Aα. Both forms were expressed at constant levels throughout the cell cycle, but Aα was expressed at a much higher level than Aβ. Both forms were found predominantly in the cytoplasm, and both had a half-life of approx. 10h. However, Aα and Aβ differed substantially in their expression patterns in normal tissues and in tumour cell lines. Whereas Aα was expressed at similarly high levels in all tissues and cell lines, Aβ expression varied greatly. In addition, in vivo studies with epitope-tagged Aα and Aβ subunits demonstrated that Aβ is a markedly weaker binder of regulatory B and catalytic C subunits than Aα. Construction of phylogenetic trees revealed that the conservation of Aα during the evolution of mammals is extraordinarily high in comparison with both Aβ and cytochrome c, suggesting that Aα is involved in more protein—protein interactions than Aβ. We also measured the binding of polyoma virus middle tumour antigen and simian virus 40 (SV40) small tumour antigen to Aα and Aβ. Whereas both isoforms bound polyoma virus middle tumour antigen equally well, only Aα bound SV40 small tumour antigen.


Sign in / Sign up

Export Citation Format

Share Document