A Development Strategy of Tailor-made Natural Deep Eutectic Solvents for the Enhanced Extraction of Hydroxynaphthoquinones from Alkanna tinctoria Roots

Planta Medica ◽  
2022 ◽  
Author(s):  
Elodie Bossard ◽  
Nikolaos Tsafantakis ◽  
Nektarios Aligiannis ◽  
Nikolas Fokialakis

Natural hydroxynaphthoquinone enantiomers (HNQs) are well-described pharmaceutical and cosmeceutical agents especially present in the roots of Alkanna tinctoria (L.) Tausch, a species native to the Mediterranean region. In this work, eco-friendly natural deep eutectic solvents (NaDESs) were developed for the selective extraction of these compounds. An extensive screening was performed using more than sixty tailor-made NaDESs. The impact of the intrinsic physicochemical properties on the HNQs extraction efficiency as well as the specificity towards the different enantiomeric pairs was thoroughly investigated. As a result of a multivariate analysis and of the one factor-a-time solvent optimization, the eutectic mixture composed of levulinic acid and glucose (LeG) using a molar ratio of 5:1 (molHBA:molHBD) and 20% of water (w/w) was found as the most appropriate mixture for the highest extraction efficiency of HNQs. Further optimization of the extraction process was attained by response surface methodology, using a temperature of 45 °C, a solid-to-liquid ratio of 30 mg/mL, and an extraction time of 50 min. A maximum extraction output of 41.72 ± 1.04 mg/g was reached for HNQs, comparable to that of the commonly used organic solvents. A solid-phase extraction step was also proposed for the recovery of HNQs and for NaDESs recycling. Our results revealed NaDESs as a highly customizable class of green solvents with remarkable capabilities for the extraction of HNQs.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2079
Author(s):  
Gui-Ya Yang ◽  
Jun-Na Song ◽  
Ya-Qing Chang ◽  
Lei Wang ◽  
Yu-Guang Zheng ◽  
...  

In the present study, a simple and environmentally friendly extraction method based on natural deep eutectic solvents (NADESs) was established to extract four bioactive steroidal saponins from Dioscoreae Nipponicae Rhizoma (DNR). A total of twenty-one types of choline chloride, betaine, and L-proline based NADESs were tailored, and the NADES composed of 1:1 molar ratio of choline chloride and malonic acid showed the best extraction efficiency for the four steroidal saponins compared with other NADESs. Then, the extraction parameters for extraction of steroidal saponins by selected tailor-made NADES were optimized using response surface methodology and the optimal extraction conditions are extraction time, 23.5 min; liquid–solid ratio, 57.5 mL/g; and water content, 54%. The microstructure of the DNR powder before and after ultrasonic extraction by conventional solvents (water and methanol) and the selected NADES were observed using field emission scanning electron microscope. In addition, the four steroidal saponins were recovered from NADESs by D101 macroporous resin with a satisfactory recovery yield between 67.27% and 79.90%. The present research demonstrates that NADESs are a suitable green media for the extraction of the bioactive steroidal saponins from DNR, and have a great potential as possible alternatives to organic solvents for efficiently extracting bioactive compounds from natural products.


2021 ◽  
Vol 21 (4) ◽  
pp. 806
Author(s):  
Orchidea Rachmaniah ◽  
Muhammad Rifqy Muhsin ◽  
Angga Widya Putra ◽  
Muhammad Rachimoellah

Curcuminoids can be successfully extracted from Curcuma zedoaria using natural deep eutectic solvents (NADES) as extraction solvents. However, a mixture of extracted curcuminoids, NADES, and impurities from C. zedoaria was obtained as a slurry at the end of the extraction process. Therefore, further separation and purification were required to obtain the extracted compound in high purity. Herein, two purification methods based on classical column chromatography (CCC) and solid-phase extraction (SPE), were evaluated for the purification of curcuminoids from NADES matrices after extraction. Choline chloride–malic acid–water (CCMA–H2O) and choline chloride–citric acid–water (CCCA–H2O) in the molar ratio of 1:1:18 were selected as NADES matrices due to their high solubility and stabilization capability for curcuminoids. Ethanol-conditioned silica gel (60–200 µm) was applied as the bed resin for CCC, and a C18 cartridge was used for SPE. Acetonitrile/0.1% acetic acid, water/0.1% acetic acid, and iso-propanol/0.1% acetic acid were used as mobile phases for CCC. For SPE, methanol/0.05% acetic acid and water/0.05% acetic acid were applied in the conditioning step, water/0.05% acetic acid in the washing step, and methanol/acetonitrile (1:1) in the eluting step. The SPE method produced higher recovery of curcuminoids from the CCCA–H2O and CCMA–H2O matrices (75.27% and 73.40%, respectively) compared to CCC (51.9% and 61.0%, respectively). After removing the NADES constituents from the crude extract of curcuminoids, recrystallization was attempted.


2021 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p>


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4736
Author(s):  
Sylwia Bajkacz ◽  
Kornelia Rusin ◽  
Anna Wolny ◽  
Jakub Adamek ◽  
Karol Erfurt ◽  
...  

A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in order to determine extraction efficiencies. NADES consisting of lactic acid and levulinic acid at a molar ratio of 1:1 exhibits the highest yields. ILs, the second green extraction agent, with various cations and anions are also investigated, where [TEA] [OAc]·AcOH, χAcOH = 0.75 displays the highest recovery. Moreover, NADES-SLE and IL-SLE (SLE, solid-liquid extraction) parameters are investigated. Using the obtained optimized method, the recoveries of the target compound in spinach are above 93% and 88% for NADES-SLE and IL-SLE procedure, respectively. The methods display good linearity within the range of 0.5–30 μg/g and LODs of 0.17 µg/g. The proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV procedures can be applied to the analysis of 20-E in real spinach samples, making it a potentially promising technique for food matrix. The main advantage of this study is the superior efficiency of the new, green extraction solvents, which results in a significant reduction of extraction time and solvents as compared to those in the literature.


2021 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p>


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1716
Author(s):  
Meiyu Li ◽  
Yize Liu ◽  
Fanjie Hu ◽  
Hongwei Ren ◽  
Erhong Duan

The environmental pollution of phenol-containing wastewater is an urgent problem with industrial development. Natural deep eutectic solvents provide an environmentally friendly alternation for the solvent extraction of phenol. This study synthesized a series of natural deep eutectic solvents with L-proline and decanoic acid as precursors, characterized by in situ infrared spectrometry, Fourier transform infrared spectrometry, hydrogen nuclear magnetic resonance spectrometry, and differential thermogravimetric analysis. Natural deep eutectic solvents have good thermal stability. The high-efficiency extraction of phenol from wastewater by natural deep eutectic solvents was investigated under mild conditions. The effects of natural deep eutectic solvents, phenol concentration, reaction temperature, and reaction time on phenol extraction were studied. The optimized extraction conditions of phenol with L-prolin/decanoic acid were as follows: molar ratio, 4.2:1; reaction time, 60 min; and temperature, 50 °C. Extraction efficiency was up to 62%. The number of extraction cycles can be up to 6, and extraction rate not less than 57%. The promising results demonstrate that natural deep eutectic solvents are efficient in the field of phenolic compound extraction in wastewater.


RSC Advances ◽  
2018 ◽  
Vol 8 (27) ◽  
pp. 15069-15077 ◽  
Author(s):  
Y. C. Wu ◽  
P. Wu ◽  
Y. B. Li ◽  
T. C. Liu ◽  
L. Zhang ◽  
...  

Natural deep eutectic solvents ultrasound-assisted extraction (NADES-UAE) was applied to extract total anthraquinones from Rheum palmatum L.


2021 ◽  
Author(s):  
Salvatore V. Giofrè ◽  
Matteo Tiecco ◽  
Angelo Ferlazzo ◽  
Roberto Romeo ◽  
Gianluca Ciancaleoni ◽  
...  

<p>The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p>


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5093 ◽  
Author(s):  
Ainul F. Kamarudin ◽  
Hanee F. Hizaddin ◽  
Lahssen El-blidi ◽  
Emad Ali ◽  
Mohd A. Hashim ◽  
...  

Deep eutectic solvents (DESs) are green solvents developed as an alternative to conventional organic solvents and ionic liquids to extract nitrogen compounds from fuel oil. DESs based on p-toluenesulfonic acid (PTSA) are a new solvent class still under investigation for extraction/separation. This study investigated a new DES formed from a combination of tetrabutylphosphonium bromide (TBPBr) and PTSA at a 1:1 molar ratio. Two sets of ternary liquid–liquid equilibrium experiments were performed with different feed concentrations of nitrogen compounds ranging up to 20 mol% in gasoline and diesel model fuel oils. More than 99% of quinoline was extracted from heptane and pentadecane using the DES, leaving the minutest amount of the contaminant. Selectivity was up to 11,000 for the heptane system and up to 24,000 for the pentadecane system at room temperature. The raffinate phase’s proton nuclear magnetic resonance (1H-NMR) spectroscopy and GC analysis identified a significantly small amount of quinoline. The selectivity toward quinoline was significantly high at low solute concentrations. The root-mean-square deviation between experimental data and the non-random two-liquid (NRTL) model was 1.12% and 0.31% with heptane and pentadecane, respectively. The results showed that the TBPBr/PTSADES is considerably efficient in eliminating nitrogen compounds from fuel oil.


Sign in / Sign up

Export Citation Format

Share Document